Cargando…
Colorectal cancer subtype identification from differential gene expression levels using minimalist deep learning
BACKGROUND: Cancer molecular subtyping plays a critical role in individualized patient treatment. In previous studies, high-throughput gene expression signature-based methods have been proposed to identify cancer subtypes. Unfortunately, the existing ones suffer from the curse of dimensionality, dat...
Autores principales: | Li, Shaochuan, Yang, Yuning, Wang, Xin, Li, Jun, Yu, Jun, Li, Xiangtao, Wong, Ka-Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034628/ https://www.ncbi.nlm.nih.gov/pubmed/35461302 http://dx.doi.org/10.1186/s13040-022-00295-w |
Ejemplares similares
-
Automated exploitation of deep learning for cancer patient stratification across multiple types
por: Sun, Pingping, et al.
Publicado: (2023) -
Learning the protein language of proteome-wide protein-protein binding sites via explainable ensemble deep learning
por: Hou, Zilong, et al.
Publicado: (2023) -
scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering
por: Wang, Yunhe, et al.
Publicado: (2023) -
Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework
por: Wang, Yansong, et al.
Publicado: (2022) -
Uncovering the key dimensions of high-throughput biomolecular data using deep learning
por: Zhang, Shixiong, et al.
Publicado: (2020)