Cargando…
Machine Learning Prediction of Non-Coding Variant Impact in Human Retinal cis-Regulatory Elements
PURPOSE: Prior studies have demonstrated the significance of specific cis-regulatory variants in retinal disease; however, determining the functional impact of regulatory variants remains a major challenge. In this study, we utilized a machine learning approach, trained on epigenomic data from the a...
Autores principales: | VandenBosch, Leah S., Luu, Kelsey, Timms, Andrew E., Challam, Shriya, Wu, Yue, Lee, Aaron Y., Cherry, Timothy J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034719/ https://www.ncbi.nlm.nih.gov/pubmed/35435921 http://dx.doi.org/10.1167/tvst.11.4.16 |
Ejemplares similares
-
Modified penetrance of coding variants by cis-regulatory variation contributes to disease risk
por: Castel, Stephane E., et al.
Publicado: (2018) -
Machine-guided design of synthetic cell type-specific cis-regulatory elements
por: Gosai, SJ, et al.
Publicado: (2023) -
Properties of non-coding DNA and identification of putative cis-regulatory elements in Theileria parva
por: Guo, Xiang, et al.
Publicado: (2008) -
Human cardiac cis-regulatory elements, their cognate transcription factors, and regulatory DNA sequence variants
por: Lee, Dongwon, et al.
Publicado: (2018) -
A cis-regulatory module activating transcription in the suspensor contains five cis-regulatory elements
por: Henry, Kelli F., et al.
Publicado: (2015)