Cargando…
Prediction of Subjective Refraction From Anterior Corneal Surface, Eye Lengths, and Age Using Machine Learning Algorithms
PURPOSE: To develop a machine learning regression model of subjective refractive prescription from minimum ocular biometry and corneal topography features. METHODS: Anterior corneal surface parameters (Zernike coefficients and keratometry), axial length, anterior chamber depth, and age were posed as...
Autores principales: | Espinosa, Julián, Pérez, Jorge, Villanueva, Asier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9034724/ https://www.ncbi.nlm.nih.gov/pubmed/35404439 http://dx.doi.org/10.1167/tvst.11.4.8 |
Ejemplares similares
-
The contribution of ocular residual astigmatism to anterior corneal astigmatism in refractive astigmatism eyes
por: Lin, Jian
Publicado: (2021) -
Author Correction: The contribution of ocular residual astigmatism to anterior corneal astigmatism in refractive astigmatism eyes
por: Lin, Jian
Publicado: (2021) -
Axial Length to Corneal Radius of Curvature Ratio and Refractive Errors
por: Hashemi, Hassan, et al.
Publicado: (2013) -
Corneal Stability following Hyperopic LASIK with Advanced Laser Ablation Profiles Analyzed by a Light Propagation Study
por: Gharaibeh, Almutez M., et al.
Publicado: (2018) -
Refractive characteristics of keratoconus eyes with corneal Vogt's striae: A contralateral eye study
por: Rakhshandadi, Tahereh, et al.
Publicado: (2021)