Cargando…
Using ANPR data to create an anonymized linked open dataset on urban bustle
ANPR cameras allow the automatic detection of vehicle license plates and are increasingly used for law enforcement. However, also statistical data generated by ANPR cameras are a potential source of urban insights. In order for this data to reach its full potential for policy-making, we research how...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035206/ http://dx.doi.org/10.1186/s12544-022-00538-1 |
_version_ | 1784693247490129920 |
---|---|
author | Van de Vyvere, Brecht Colpaert, Pieter |
author_facet | Van de Vyvere, Brecht Colpaert, Pieter |
author_sort | Van de Vyvere, Brecht |
collection | PubMed |
description | ANPR cameras allow the automatic detection of vehicle license plates and are increasingly used for law enforcement. However, also statistical data generated by ANPR cameras are a potential source of urban insights. In order for this data to reach its full potential for policy-making, we research how this data can be shared in digital twins, with researchers, for a diverse set of machine learning models, and even Open Data portals. This article’s key objective is to find a way to anonymize and aggregate ANPR data in a way that it still can provide useful visualizations for local decision making. We introduce an approach to aggregate the data with geotemporal binning and publish it by combining nine existing data specifications. We implemented the approach for the city of Kortrijk (Belgium) with 43 ANPR cameras, developed the ANPR Metrics tool to generate the statistical data and dashboards on top of the data, and tested whether mobility experts from the city could deduct valuable insights. We present a couple of insights that were found as a result, as a proof that anonymized ANPR data complements their currently used traffic analysis tools, providing a valuable source for data-driven policy-making. |
format | Online Article Text |
id | pubmed-9035206 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-90352062022-04-25 Using ANPR data to create an anonymized linked open dataset on urban bustle Van de Vyvere, Brecht Colpaert, Pieter Eur. Transp. Res. Rev. Original Paper ANPR cameras allow the automatic detection of vehicle license plates and are increasingly used for law enforcement. However, also statistical data generated by ANPR cameras are a potential source of urban insights. In order for this data to reach its full potential for policy-making, we research how this data can be shared in digital twins, with researchers, for a diverse set of machine learning models, and even Open Data portals. This article’s key objective is to find a way to anonymize and aggregate ANPR data in a way that it still can provide useful visualizations for local decision making. We introduce an approach to aggregate the data with geotemporal binning and publish it by combining nine existing data specifications. We implemented the approach for the city of Kortrijk (Belgium) with 43 ANPR cameras, developed the ANPR Metrics tool to generate the statistical data and dashboards on top of the data, and tested whether mobility experts from the city could deduct valuable insights. We present a couple of insights that were found as a result, as a proof that anonymized ANPR data complements their currently used traffic analysis tools, providing a valuable source for data-driven policy-making. Springer International Publishing 2022-04-24 2022 /pmc/articles/PMC9035206/ http://dx.doi.org/10.1186/s12544-022-00538-1 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visithttp://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Paper Van de Vyvere, Brecht Colpaert, Pieter Using ANPR data to create an anonymized linked open dataset on urban bustle |
title | Using ANPR data to create an anonymized linked open dataset on urban bustle |
title_full | Using ANPR data to create an anonymized linked open dataset on urban bustle |
title_fullStr | Using ANPR data to create an anonymized linked open dataset on urban bustle |
title_full_unstemmed | Using ANPR data to create an anonymized linked open dataset on urban bustle |
title_short | Using ANPR data to create an anonymized linked open dataset on urban bustle |
title_sort | using anpr data to create an anonymized linked open dataset on urban bustle |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035206/ http://dx.doi.org/10.1186/s12544-022-00538-1 |
work_keys_str_mv | AT vandevyverebrecht usinganprdatatocreateananonymizedlinkedopendatasetonurbanbustle AT colpaertpieter usinganprdatatocreateananonymizedlinkedopendatasetonurbanbustle |