Cargando…
An incremental learning approach to prediction models of SEIRD variables in the context of the COVID-19 pandemic
Several works have proposed predictive models of the SEIRD (Susceptible, Exposed, Infected, Recovered, and Dead) variables to characterize the pandemic of COVID-19. One of the challenges of these models is to be able to follow the dynamics of the disease to make more precise predictions. In this pap...
Autores principales: | Camargo, E., Aguilar, J., Quintero, Y., Rivas, F., Ardila, D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035346/ https://www.ncbi.nlm.nih.gov/pubmed/35499039 http://dx.doi.org/10.1007/s12553-022-00668-5 |
Ejemplares similares
-
Machine learning models for the prediction of the SEIRD variables for the COVID-19 pandemic based on a deep dependence analysis of variables
por: Quintero, Yullis, et al.
Publicado: (2021) -
SEIRD model to study the asymptomatic growth during COVID-19 pandemic in India
por: Chatterjee, Saptarshi, et al.
Publicado: (2020) -
Identification and estimation of the SEIRD epidemic model for COVID-19
por: Korolev, Ivan
Publicado: (2021) -
Explaining COVID-19 outbreaks with reactive SEIRD models
por: Menda, Kunal, et al.
Publicado: (2021) -
Predicting and analyzing the COVID-19 epidemic in China: Based on SEIRD, LSTM and GWR models
por: Liu, Fenglin, et al.
Publicado: (2020)