Cargando…

The impact of neuron morphology on cortical network architecture

The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons...

Descripción completa

Detalles Bibliográficos
Autores principales: Udvary, Daniel, Harth, Philipp, Macke, Jakob H., Hege, Hans-Christian, de Kock, Christiaan P.J., Sakmann, Bert, Oberlaender, Marcel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035680/
https://www.ncbi.nlm.nih.gov/pubmed/35417720
http://dx.doi.org/10.1016/j.celrep.2022.110677
_version_ 1784693349315248128
author Udvary, Daniel
Harth, Philipp
Macke, Jakob H.
Hege, Hans-Christian
de Kock, Christiaan P.J.
Sakmann, Bert
Oberlaender, Marcel
author_facet Udvary, Daniel
Harth, Philipp
Macke, Jakob H.
Hege, Hans-Christian
de Kock, Christiaan P.J.
Sakmann, Bert
Oberlaender, Marcel
author_sort Udvary, Daniel
collection PubMed
description The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents.
format Online
Article
Text
id pubmed-9035680
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-90356802022-05-24 The impact of neuron morphology on cortical network architecture Udvary, Daniel Harth, Philipp Macke, Jakob H. Hege, Hans-Christian de Kock, Christiaan P.J. Sakmann, Bert Oberlaender, Marcel Cell Rep Article The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents. Cell Press 2022-04-13 /pmc/articles/PMC9035680/ /pubmed/35417720 http://dx.doi.org/10.1016/j.celrep.2022.110677 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Udvary, Daniel
Harth, Philipp
Macke, Jakob H.
Hege, Hans-Christian
de Kock, Christiaan P.J.
Sakmann, Bert
Oberlaender, Marcel
The impact of neuron morphology on cortical network architecture
title The impact of neuron morphology on cortical network architecture
title_full The impact of neuron morphology on cortical network architecture
title_fullStr The impact of neuron morphology on cortical network architecture
title_full_unstemmed The impact of neuron morphology on cortical network architecture
title_short The impact of neuron morphology on cortical network architecture
title_sort impact of neuron morphology on cortical network architecture
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035680/
https://www.ncbi.nlm.nih.gov/pubmed/35417720
http://dx.doi.org/10.1016/j.celrep.2022.110677
work_keys_str_mv AT udvarydaniel theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT harthphilipp theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT mackejakobh theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT hegehanschristian theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT dekockchristiaanpj theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT sakmannbert theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT oberlaendermarcel theimpactofneuronmorphologyoncorticalnetworkarchitecture
AT udvarydaniel impactofneuronmorphologyoncorticalnetworkarchitecture
AT harthphilipp impactofneuronmorphologyoncorticalnetworkarchitecture
AT mackejakobh impactofneuronmorphologyoncorticalnetworkarchitecture
AT hegehanschristian impactofneuronmorphologyoncorticalnetworkarchitecture
AT dekockchristiaanpj impactofneuronmorphologyoncorticalnetworkarchitecture
AT sakmannbert impactofneuronmorphologyoncorticalnetworkarchitecture
AT oberlaendermarcel impactofneuronmorphologyoncorticalnetworkarchitecture