Cargando…
The impact of neuron morphology on cortical network architecture
The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035680/ https://www.ncbi.nlm.nih.gov/pubmed/35417720 http://dx.doi.org/10.1016/j.celrep.2022.110677 |
_version_ | 1784693349315248128 |
---|---|
author | Udvary, Daniel Harth, Philipp Macke, Jakob H. Hege, Hans-Christian de Kock, Christiaan P.J. Sakmann, Bert Oberlaender, Marcel |
author_facet | Udvary, Daniel Harth, Philipp Macke, Jakob H. Hege, Hans-Christian de Kock, Christiaan P.J. Sakmann, Bert Oberlaender, Marcel |
author_sort | Udvary, Daniel |
collection | PubMed |
description | The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents. |
format | Online Article Text |
id | pubmed-9035680 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-90356802022-05-24 The impact of neuron morphology on cortical network architecture Udvary, Daniel Harth, Philipp Macke, Jakob H. Hege, Hans-Christian de Kock, Christiaan P.J. Sakmann, Bert Oberlaender, Marcel Cell Rep Article The neurons in the cerebral cortex are not randomly interconnected. This specificity in wiring can result from synapse formation mechanisms that connect neurons, depending on their electrical activity and genetically defined identity. Here, we report that the morphological properties of the neurons provide an additional prominent source by which wiring specificity emerges in cortical networks. This morphologically determined wiring specificity reflects similarities between the neurons’ axo-dendritic projections patterns, the packing density, and the cellular diversity of the neuropil. The higher these three factors are, the more recurrent is the topology of the network. Conversely, the lower these factors are, the more feedforward is the network’s topology. These principles predict the empirically observed occurrences of clusters of synapses, cell type-specific connectivity patterns, and nonrandom network motifs. Thus, we demonstrate that wiring specificity emerges in the cerebral cortex at subcellular, cellular, and network scales from the specific morphological properties of its neuronal constituents. Cell Press 2022-04-13 /pmc/articles/PMC9035680/ /pubmed/35417720 http://dx.doi.org/10.1016/j.celrep.2022.110677 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Udvary, Daniel Harth, Philipp Macke, Jakob H. Hege, Hans-Christian de Kock, Christiaan P.J. Sakmann, Bert Oberlaender, Marcel The impact of neuron morphology on cortical network architecture |
title | The impact of neuron morphology on cortical network architecture |
title_full | The impact of neuron morphology on cortical network architecture |
title_fullStr | The impact of neuron morphology on cortical network architecture |
title_full_unstemmed | The impact of neuron morphology on cortical network architecture |
title_short | The impact of neuron morphology on cortical network architecture |
title_sort | impact of neuron morphology on cortical network architecture |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035680/ https://www.ncbi.nlm.nih.gov/pubmed/35417720 http://dx.doi.org/10.1016/j.celrep.2022.110677 |
work_keys_str_mv | AT udvarydaniel theimpactofneuronmorphologyoncorticalnetworkarchitecture AT harthphilipp theimpactofneuronmorphologyoncorticalnetworkarchitecture AT mackejakobh theimpactofneuronmorphologyoncorticalnetworkarchitecture AT hegehanschristian theimpactofneuronmorphologyoncorticalnetworkarchitecture AT dekockchristiaanpj theimpactofneuronmorphologyoncorticalnetworkarchitecture AT sakmannbert theimpactofneuronmorphologyoncorticalnetworkarchitecture AT oberlaendermarcel theimpactofneuronmorphologyoncorticalnetworkarchitecture AT udvarydaniel impactofneuronmorphologyoncorticalnetworkarchitecture AT harthphilipp impactofneuronmorphologyoncorticalnetworkarchitecture AT mackejakobh impactofneuronmorphologyoncorticalnetworkarchitecture AT hegehanschristian impactofneuronmorphologyoncorticalnetworkarchitecture AT dekockchristiaanpj impactofneuronmorphologyoncorticalnetworkarchitecture AT sakmannbert impactofneuronmorphologyoncorticalnetworkarchitecture AT oberlaendermarcel impactofneuronmorphologyoncorticalnetworkarchitecture |