Cargando…
Strain-durable dark current in near-infrared organic photodetectors for skin-conformal photoplethysmographic sensors
Sensitive detection of near-infrared (NIR) light is applicable to variety of optical, chemical, and biomedical sensors. Of these diverse applications, NIR photodetectors have been used as a key component for photoplethysmography (PPG) sensors. In particular, because NIR organic photodetectors (OPDs)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035714/ https://www.ncbi.nlm.nih.gov/pubmed/35479416 http://dx.doi.org/10.1016/j.isci.2022.104194 |
Sumario: | Sensitive detection of near-infrared (NIR) light is applicable to variety of optical, chemical, and biomedical sensors. Of these diverse applications, NIR photodetectors have been used as a key component for photoplethysmography (PPG) sensors. In particular, because NIR organic photodetectors (OPDs) enable fabrication of stretchable and skin-conformal PPG sensors, they are attaining tremendously increasing interest in both academia and industry. Herein, we report strain-durable and highly sensitive NIR OPDs using an organic bulk heterojunction (BHJ) layer. For effective suppression of dark current, we employed BHJ combination consisting of PTB7-Th:Y6 which forms high energy barrier against transport-injected holes. The optimized OPDs exhibited high specific detectivity up to 2.2 × 10(12) Jones at 800 nm. By constructing the devices on the parylene substrates, we successfully demonstrated stretchable NIR OPDs and high-performance skin-conformal PPG sensors. |
---|