Cargando…

Exploration in the Therapeutic and Multi-Target Mechanism of Ketamine on Cerebral Ischemia Based on Network Pharmacology and Molecular Docking

BACKGROUND: Ketamine is famous for its dissociative anesthetic properties. It is also analgesic, anti-inflammatory and anti-depressant, and even has a cerebral protective effect. We searched the evidence of the correlation between ketamine target and clinical efficacy and utilized network pharmacolo...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiong, Li, Liu, Shi-Cheng, Huo, Si-Ying, Pu, Lan-Qing, Li, Jun-Jie, Bai, Wen-Ya, Yang, Yuan, Shao, Jian-Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035835/
https://www.ncbi.nlm.nih.gov/pubmed/35480991
http://dx.doi.org/10.2147/IJGM.S345884
Descripción
Sumario:BACKGROUND: Ketamine is famous for its dissociative anesthetic properties. It is also analgesic, anti-inflammatory and anti-depressant, and even has a cerebral protective effect. We searched the evidence of the correlation between ketamine target and clinical efficacy and utilized network pharmacology to gather information about the multi-target mechanism of ketamine against cerebral ischemia (CI). We found that ketamine’s clinical significance may be more extensive than previously thought. METHODS: The drug target of ketamine and CI-related genes were predicted by SwissTargetPrediction, DrugBank, PubChem, GeneCards and DisGeNET databases. The intersection of ketamine’s drug-targets and CI-related genes was analyzed by using GO and KEGG. We predicted the molecular docking between the potential target and ketamine. RESULTS: The results indicated that the effect of ketamine on CI was primarily associated with the target of α-synuclein (SNCA), muscarinic acetylcholine receptor M1 (CHRM1) and nitric oxide synthase 1 (NOS1). It principally regulates the signal pathways of circadian transmission, calcium signaling pathway, dopaminergic synapse, cholinergic synapse and glutamatergic synapse. Molecular docking analysis exhibited that hydrogen bond and Pi-Pi interaction were the predominant modes of interaction. CONCLUSION: There are protein targets affected by ketamine in the treatment of CI. Three pivotal targets involving 298 proteins, SNCA, CHRM1 and NOS1, have emerged as multi-target mechanisms for ketamine in CI therapy. Similarly, this study also provides a new idea for introducing network pharmacology into the evaluation of multi-targeted drugs for CI and cerebral protection.