Cargando…

JAK inhibitors and COVID-19

During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune respon...

Descripción completa

Detalles Bibliográficos
Autores principales: Levy, Gabriel, Guglielmelli, Paola, Langmuir, Peter, Constantinescu, Stefan N
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035837/
https://www.ncbi.nlm.nih.gov/pubmed/35459733
http://dx.doi.org/10.1136/jitc-2021-002838
_version_ 1784693387026235392
author Levy, Gabriel
Guglielmelli, Paola
Langmuir, Peter
Constantinescu, Stefan N
author_facet Levy, Gabriel
Guglielmelli, Paola
Langmuir, Peter
Constantinescu, Stefan N
author_sort Levy, Gabriel
collection PubMed
description During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules.
format Online
Article
Text
id pubmed-9035837
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher BMJ Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-90358372022-04-27 JAK inhibitors and COVID-19 Levy, Gabriel Guglielmelli, Paola Langmuir, Peter Constantinescu, Stefan N J Immunother Cancer Review During SARS-CoV-2 infection, the innate immune response can be inhibited or delayed, and the subsequent persistent viral replication can induce emergency signals that may culminate in a cytokine storm contributing to the severe evolution of COVID-19. Cytokines are key regulators of the immune response and virus clearance, and, as such, are linked to the—possibly altered—response to the SARS-CoV-2. They act via a family of more than 40 transmembrane receptors that are coupled to one or several of the 4 Janus kinases (JAKs) coded by the human genome, namely JAK1, JAK2, JAK3, and TYK2. Once activated, JAKs act on pathways for either survival, proliferation, differentiation, immune regulation or, in the case of type I interferons, antiviral and antiproliferative effects. Studies of graft-versus-host and systemic rheumatic diseases indicated that JAK inhibitors (JAKi) exert immunosuppressive effects that are non-redundant with those of corticotherapy. Therefore, they hold the potential to cut-off pathological reactions in COVID-19. Significant clinical experience already exists with several JAKi in COVID-19, such as baricitinib, ruxolitinib, tofacitinib, and nezulcitinib, which were suggested by a meta-analysis (Patoulias et al.) to exert a benefit in terms of risk reduction concerning major outcomes when added to standard of care in patients with COVID-19. Yet, only baricitinib is recommended in first line for severe COVID-19 treatment by the WHO, as it is the only JAKi that has proven efficient to reduce mortality in individual randomized clinical trials (RCT), especially the Adaptive COVID-19 Treatment Trial (ACTT-2) and COV-BARRIER phase 3 trials. As for secondary effects of JAKi treatment, the main caution with baricitinib consists in the induced immunosuppression as long-term side effects should not be an issue in patients treated for COVID-19. We discuss whether a class effect of JAKi may be emerging in COVID-19 treatment, although at the moment the convincing data are for baricitinib only. Given the key role of JAK1 in both type I IFN action and signaling by cytokines involved in pathogenic effects, establishing the precise timing of treatment will be very important in future trials, along with the control of viral replication by associating antiviral molecules. BMJ Publishing Group 2022-04-22 /pmc/articles/PMC9035837/ /pubmed/35459733 http://dx.doi.org/10.1136/jitc-2021-002838 Text en © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Review
Levy, Gabriel
Guglielmelli, Paola
Langmuir, Peter
Constantinescu, Stefan N
JAK inhibitors and COVID-19
title JAK inhibitors and COVID-19
title_full JAK inhibitors and COVID-19
title_fullStr JAK inhibitors and COVID-19
title_full_unstemmed JAK inhibitors and COVID-19
title_short JAK inhibitors and COVID-19
title_sort jak inhibitors and covid-19
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035837/
https://www.ncbi.nlm.nih.gov/pubmed/35459733
http://dx.doi.org/10.1136/jitc-2021-002838
work_keys_str_mv AT levygabriel jakinhibitorsandcovid19
AT guglielmellipaola jakinhibitorsandcovid19
AT langmuirpeter jakinhibitorsandcovid19
AT constantinescustefann jakinhibitorsandcovid19