Cargando…
Retinopathy grading with deep learning and wavelet hyper-analytic activations
Recent developments reveal the prominence of Diabetic Retinopathy (DR) grading. In the past few decades, Wavelet-based DR classification has shown successful impacts and the Deep Learning models, like Convolutional Neural Networks (CNN’s), have evolved in offering the highest prediction accuracy. In...
Autores principales: | Chandrasekaran, Raja, Loganathan, Balaji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035984/ https://www.ncbi.nlm.nih.gov/pubmed/35493724 http://dx.doi.org/10.1007/s00371-022-02489-z |
Ejemplares similares
-
The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy
por: Zhang, Wen-fei, et al.
Publicado: (2022) -
Deep Learning Fundus Image Analysis for Diabetic Retinopathy and Macular Edema Grading
por: Sahlsten, Jaakko, et al.
Publicado: (2019) -
Automated Grading of Diabetic Retinopathy with Ultra-Widefield Fluorescein Angiography and Deep Learning
por: Wang, Xiaoling, et al.
Publicado: (2021) -
Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis
por: Gong, Cihun-Siyong Alex, et al.
Publicado: (2022) -
Variability in Grading Diabetic Retinopathy Using Retinal Photography and Its Comparison with an Automated Deep Learning Diabetic Retinopathy Screening Software
por: Teoh, Chin Sheng, et al.
Publicado: (2023)