Cargando…
Applications of Machine Learning in Alloy Catalysts: Rational Selection and Future Development of Descriptors
At present, alloys have broad application prospects in heterogeneous catalysis, due to their various catalytic active sites produced by their vast element combinations and complex geometric structures. However, it is the diverse variables of alloys that lead to the difficulty in understanding the st...
Autores principales: | Yang, Ze, Gao, Wang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036033/ https://www.ncbi.nlm.nih.gov/pubmed/35229986 http://dx.doi.org/10.1002/advs.202106043 |
Ejemplares similares
-
Machine learning and molecular descriptors enable rational solvent selection in asymmetric catalysis
por: Amar, Yehia, et al.
Publicado: (2019) -
Machine Learning Descriptors for Data‐Driven Catalysis Study
por: Mou, Li‐Hui, et al.
Publicado: (2023) -
Identifying Descriptors for Promoted Rhodium-Based
Catalysts for Higher Alcohol Synthesis via Machine
Learning
por: Suvarna, Manu, et al.
Publicado: (2022) -
Machine Learning Applications and Optimization of Clustering Methods Improve the Selection of Descriptors in Blackberry Germplasm Banks
por: Henao-Rojas, Juan Camilo, et al.
Publicado: (2021) -
Descriptor selection for predicting interfacial thermal resistance by machine learning methods
por: Tian, Xiaojuan, et al.
Publicado: (2021)