Cargando…
Missing value imputation using least squares techniques in contaminated matrices
This paper describes strategies to reduce the possible effect of outliers on the quality of imputations produced by a method that uses a mixture of two least squares techniques: regression and lower rank approximation of a matrix. To avoid the influence of discrepant data and maintain the computatio...
Autores principales: | Garcia-Peña, Marisol, Arciniegas-Alarcón, Sergio, Krzanowski, Wojtek J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036115/ https://www.ncbi.nlm.nih.gov/pubmed/35478595 http://dx.doi.org/10.1016/j.mex.2022.101683 |
Ejemplares similares
-
Missing value imputation in a data matrix using the regularised singular value decomposition
por: Arciniegas-Alarcón, Sergio, et al.
Publicado: (2023) -
Kernel weighted least square approach for imputing missing values of metabolomics data
por: Kumar, Nishith, et al.
Publicado: (2021) -
Optimization methods for the imputation of missing values in Educational Institutions Data
por: Aureli, D., et al.
Publicado: (2021) -
Accounting for missing data in statistical analyses: multiple imputation is not always the answer
por: Hughes, Rachael A, et al.
Publicado: (2019) -
NAguideR: performing and prioritizing missing value imputations for consistent bottom-up proteomic analyses
por: Wang, Shisheng, et al.
Publicado: (2020)