Cargando…

Design of an omnidirectional camouflage device with anisotropic confocal elliptic geometry in thermal-electric field

The designed confocal elliptical core-shell structure can realize the omnidirectional camouflage effect without disturbing temperature and electric potential profiles as the directions of heat flux and electric current change. Based on the anisotropy of the confocal ellipse, the anisotropic effectiv...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Huolei, Zhang, Xingwei, Zhang, Yuekai, Zhou, Limin, Ni, Yushan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036122/
https://www.ncbi.nlm.nih.gov/pubmed/35479400
http://dx.doi.org/10.1016/j.isci.2022.104183
Descripción
Sumario:The designed confocal elliptical core-shell structure can realize the omnidirectional camouflage effect without disturbing temperature and electric potential profiles as the directions of heat flux and electric current change. Based on the anisotropy of the confocal ellipse, the anisotropic effective parameters of the confocal elliptical core-shell structure are derived under different heat flux and electric current launching. Then, the matrix material should be anisotropic as the effective parameters to satisfy the omnidirectional camouflage effect, which is demonstrated numerically. In addition, we present a composite structure to realize the anisotropic matrix. The experimental results show that the camouflage device embedded in the composite structure can eliminate the scattering caused by the elliptical core under different directions of heat flux and electric current, thus achieving the omnidirectional thermal-electric camouflage effect experimentally. The omnidirectional camouflage effect in thermal and electric fields can greatly widen the application fields of this device with anisotropic geometry.