Cargando…
Two Modulators of Skeletal Development: BMPs and Proteoglycans
During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036252/ https://www.ncbi.nlm.nih.gov/pubmed/35466193 http://dx.doi.org/10.3390/jdb10020015 |
_version_ | 1784693482171924480 |
---|---|
author | Koosha, Elham Eames, B. Frank |
author_facet | Koosha, Elham Eames, B. Frank |
author_sort | Koosha, Elham |
collection | PubMed |
description | During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation. |
format | Online Article Text |
id | pubmed-9036252 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-90362522022-04-26 Two Modulators of Skeletal Development: BMPs and Proteoglycans Koosha, Elham Eames, B. Frank J Dev Biol Review During embryogenesis, skeletal development is tightly regulated by locally secreted growth factors that interact with proteoglycans (PGs) in the extracellular matrix (ECM). Bone morphogenetic proteins (BMPs) are multifunctional growth factors that play critical roles in cartilage maturation and bone formation. BMP signals are transduced from plasma membrane receptors to the nucleus through both canonical Smad and noncanonical p38 mitogen-activated protein kinase (MAPK) pathways. BMP signalling is modulated by a variety of endogenous and exogenous molecular mechanisms at different spatiotemporal levels and in both positive and negative manners. As an endogenous example, BMPs undergo extracellular regulation by PGs, which generally regulate the efficiency of ligand-receptor binding. BMP signalling can also be exogenously perturbed by a group of small molecule antagonists, such as dorsomorphin and its derivatives, that selectively bind to and inhibit the intracellular kinase domain of BMP type I receptors. In this review, we present a current understanding of BMPs and PGs functions in cartilage maturation and osteoblast differentiation, highlighting BMP–PG interactions. We also discuss the identification of highly selective small-molecule BMP receptor type I inhibitors. This review aims to shed light on the importance of BMP signalling and PGs in cartilage maturation and bone formation. MDPI 2022-04-06 /pmc/articles/PMC9036252/ /pubmed/35466193 http://dx.doi.org/10.3390/jdb10020015 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Koosha, Elham Eames, B. Frank Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title | Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title_full | Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title_fullStr | Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title_full_unstemmed | Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title_short | Two Modulators of Skeletal Development: BMPs and Proteoglycans |
title_sort | two modulators of skeletal development: bmps and proteoglycans |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036252/ https://www.ncbi.nlm.nih.gov/pubmed/35466193 http://dx.doi.org/10.3390/jdb10020015 |
work_keys_str_mv | AT kooshaelham twomodulatorsofskeletaldevelopmentbmpsandproteoglycans AT eamesbfrank twomodulatorsofskeletaldevelopmentbmpsandproteoglycans |