Cargando…
Applied Machine Learning Toward Drug Discovery Enhancement: Leishmaniases as a Case Study
Drug discovery (DD) research is a complex field with a high attrition rate. Machine learning (ML) approaches combined to chemoinformatics are of valuable input to this field. We, herein, focused on implementing multiple ML algorithms that shall learn from different molecular fingerprints (FPs) of 65...
Autores principales: | Harigua-Souiai, Emna, Oualha, Rafeh, Souiai, Oussama, Abdeljaoued-Tej, Ines, Guizani, Ikram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036323/ https://www.ncbi.nlm.nih.gov/pubmed/35478992 http://dx.doi.org/10.1177/11779322221090349 |
Ejemplares similares
-
Deep Learning Algorithms Achieved Satisfactory Predictions When Trained on a Novel Collection of Anticoronavirus Molecules
por: Harigua-Souiai, Emna, et al.
Publicado: (2021) -
Infection of Human Neutrophils With Leishmania infantum or Leishmania major Strains Triggers Activation and Differential Cytokines Release
por: Oualha, Rafeh, et al.
Publicado: (2019) -
Leishmania infantum 5’-Methylthioadenosine Phosphorylase presents relevant structural divergence to constitute a potential drug target
por: Abid, Hela, et al.
Publicado: (2017) -
Genomic Characteristics of Invasive Streptococcus pneumoniae Serotype 1 in New Caledonia Prior to the Introduction of PCV13
por: Hanachi, Mariem, et al.
Publicado: (2020) -
Identification of binding sites and favorable ligand binding moieties by virtual screening and self-organizing map analysis
por: Harigua-Souiai, Emna, et al.
Publicado: (2015)