Cargando…
Domain Adaptation Using Convolutional Autoencoder and Gradient Boosting for Adverse Events Prediction in the Intensive Care Unit
More than 5 million patients have admitted annually to intensive care units (ICUs) in the United States. The leading causes of mortality are cardiovascular failures, multi-organ failures, and sepsis. Data-driven techniques have been used in the analysis of patient data to predict adverse events, suc...
Autores principales: | Zhu, Yuanda, Venugopalan, Janani, Zhang, Zhenyu, Chanani, Nikhil K., Maher, Kevin O., Wang, May D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036368/ https://www.ncbi.nlm.nih.gov/pubmed/35481281 http://dx.doi.org/10.3389/frai.2022.640926 |
Ejemplares similares
-
Predicting energy use in construction using Extreme Gradient Boosting
por: Han, Jiaming, et al.
Publicado: (2023) -
Detection of protein, starch, oil, and moisture content of corn kernels using one-dimensional convolutional autoencoder and near-infrared spectroscopy
por: Cataltas, Ozcan, et al.
Publicado: (2023) -
Learning with privileged and sensitive information: a gradient-boosting approach
por: Yan, Siwen, et al.
Publicado: (2023) -
Stacked ensemble deep learning for pancreas cancer classification using extreme gradient boosting
por: Bakasa, Wilson, et al.
Publicado: (2023) -
IRC-Safe Graph Autoencoder for Unsupervised Anomaly Detection
por: Atkinson, Oliver, et al.
Publicado: (2022)