Cargando…
AutoCoV: tracking the early spread of COVID-19 in terms of the spatial and temporal patterns from embedding space by K-mer based deep learning
BACKGROUND: The widely spreading coronavirus disease (COVID-19) has three major spreading properties: pathogenic mutations, spatial, and temporal propagation patterns. We know the spread of the virus geographically and temporally in terms of statistics, i.e., the number of patients. However, we are...
Autores principales: | Sung, Inyoung, Lee, Sangseon, Pak, Minwoo, Shin, Yunyol, Kim, Sun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036508/ https://www.ncbi.nlm.nih.gov/pubmed/35468739 http://dx.doi.org/10.1186/s12859-022-04679-x |
Ejemplares similares
-
Deep hierarchical embedding for simultaneous modeling of GPCR proteins in a unified metric space
por: Lee, Taeheon, et al.
Publicado: (2021) -
Effects of spaced k-mers on alignment-free genotyping
por: Häntze, Hartmut, et al.
Publicado: (2023) -
Space-efficient representation of genomic k-mer count tables
por: Shibuya, Yoshihiro, et al.
Publicado: (2022) -
Spread of MERS to South Korea and China
por: Hui, David S, et al.
Publicado: (2015) -
Tracking down MERS coronavirus
por: Hofer, Ursula
Publicado: (2013)