Cargando…
Single wall carbon nanotube based optical rectenna
We present an optical rectenna by engineering a rectifying diode at the interface between a metal probe of an atomic force microscope (AFM) and a single wall carbon nanotube (SWCNT) that acts as a nano-antenna. Individual SWCNT electrical and optical characteristics have been investigated using a co...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036672/ https://www.ncbi.nlm.nih.gov/pubmed/35479053 http://dx.doi.org/10.1039/d1ra04186j |
_version_ | 1784693566125113344 |
---|---|
author | Tizani, Lina Abbas, Yawar Yassin, Ahmed Mahdy Mohammad, Baker Rezeq, Moh’d |
author_facet | Tizani, Lina Abbas, Yawar Yassin, Ahmed Mahdy Mohammad, Baker Rezeq, Moh’d |
author_sort | Tizani, Lina |
collection | PubMed |
description | We present an optical rectenna by engineering a rectifying diode at the interface between a metal probe of an atomic force microscope (AFM) and a single wall carbon nanotube (SWCNT) that acts as a nano-antenna. Individual SWCNT electrical and optical characteristics have been investigated using a conductive AFM nano-probe in contact with two device structures, one with a SWCNT placed on a CuO/Cu substrate and the other one with a SWCNT on a SiO(2)/Si substrate. The I–V measurements performed for both designs have exhibited an explicit rectification behavior and the sensitivity of carbon nanotube (CNT)-based rectenna to light. The measured output current at a set voltage value demonstrates the significant effect of the light irradiation on the current signal generated between the Au nano-probe and CNT interface. This effect is more prominent in the case of the CuO/Cu substrate. Detailed analysis of the system, including the energy band diagram, materials characterization and finite element simulation, is included to explain the experimental observations. This work will pave the way for more investigations and potential applications of CNTs as nano-rectennas in optical communication and energy harvesting systems. |
format | Online Article Text |
id | pubmed-9036672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90366722022-04-26 Single wall carbon nanotube based optical rectenna Tizani, Lina Abbas, Yawar Yassin, Ahmed Mahdy Mohammad, Baker Rezeq, Moh’d RSC Adv Chemistry We present an optical rectenna by engineering a rectifying diode at the interface between a metal probe of an atomic force microscope (AFM) and a single wall carbon nanotube (SWCNT) that acts as a nano-antenna. Individual SWCNT electrical and optical characteristics have been investigated using a conductive AFM nano-probe in contact with two device structures, one with a SWCNT placed on a CuO/Cu substrate and the other one with a SWCNT on a SiO(2)/Si substrate. The I–V measurements performed for both designs have exhibited an explicit rectification behavior and the sensitivity of carbon nanotube (CNT)-based rectenna to light. The measured output current at a set voltage value demonstrates the significant effect of the light irradiation on the current signal generated between the Au nano-probe and CNT interface. This effect is more prominent in the case of the CuO/Cu substrate. Detailed analysis of the system, including the energy band diagram, materials characterization and finite element simulation, is included to explain the experimental observations. This work will pave the way for more investigations and potential applications of CNTs as nano-rectennas in optical communication and energy harvesting systems. The Royal Society of Chemistry 2021-07-08 /pmc/articles/PMC9036672/ /pubmed/35479053 http://dx.doi.org/10.1039/d1ra04186j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by-nc/3.0/ |
spellingShingle | Chemistry Tizani, Lina Abbas, Yawar Yassin, Ahmed Mahdy Mohammad, Baker Rezeq, Moh’d Single wall carbon nanotube based optical rectenna |
title | Single wall carbon nanotube based optical rectenna |
title_full | Single wall carbon nanotube based optical rectenna |
title_fullStr | Single wall carbon nanotube based optical rectenna |
title_full_unstemmed | Single wall carbon nanotube based optical rectenna |
title_short | Single wall carbon nanotube based optical rectenna |
title_sort | single wall carbon nanotube based optical rectenna |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036672/ https://www.ncbi.nlm.nih.gov/pubmed/35479053 http://dx.doi.org/10.1039/d1ra04186j |
work_keys_str_mv | AT tizanilina singlewallcarbonnanotubebasedopticalrectenna AT abbasyawar singlewallcarbonnanotubebasedopticalrectenna AT yassinahmedmahdy singlewallcarbonnanotubebasedopticalrectenna AT mohammadbaker singlewallcarbonnanotubebasedopticalrectenna AT rezeqmohd singlewallcarbonnanotubebasedopticalrectenna |