Cargando…
Machine learning to predict no reflow and in-hospital mortality in patients with ST-segment elevation myocardial infarction that underwent primary percutaneous coronary intervention
BACKGROUND: The machine learning algorithm (MLA) was implemented to establish an optimal model to predict the no reflow (NR) process and in-hospital death that occurred in ST-elevation myocardial infarction (STEMI) patients who underwent primary percutaneous coronary intervention (pPCI). METHODS: Th...
Autores principales: | Deng, Lianxiang, Zhao, Xianming, Su, Xiaolin, Zhou, Mei, Huang, Daizheng, Zeng, Xiaocong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036765/ https://www.ncbi.nlm.nih.gov/pubmed/35462531 http://dx.doi.org/10.1186/s12911-022-01853-2 |
Ejemplares similares
-
No reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction
por: Gupta, Sanjiv, et al.
Publicado: (2016) -
Prediction of no-reflow phenomenon in patients treated with primary percutaneous coronary intervention for ST-segment elevation myocardial infarction
por: Yang, Li, et al.
Publicado: (2020) -
A nomogram for predicting the risk of no-reflow after primary percutaneous coronary intervention in elderly patients with ST-segment elevation myocardial infarction
por: Yang, Li, et al.
Publicado: (2021) -
Risk Factors for No-Reflow in Patients with ST-Elevation Myocardial Infarction Who Underwent Percutaneous Coronary Intervention: A Case-Control Study
por: Yu, Ying, et al.
Publicado: (2022) -
Serum cystatin C levels relate to no-reflow phenomenon in percutaneous coronary interventions in ST-segment elevation myocardial infarction
por: Cheng, Chao, et al.
Publicado: (2019)