Cargando…

Vascular function of the T3/modern clade WUSCHEL-Related HOMEOBOX transcription factor genes predate apical meristem-maintenance function

BACKGROUND: Plants have the lifelong ability to generate new organs due to the persistent functioning of stem cells. In seed plants, groups of stem cells are housed in the shoot apical meristem (SAM), root apical meristem (RAM), and vascular cambium (VC). In ferns, a single shoot stem cell, the apic...

Descripción completa

Detalles Bibliográficos
Autores principales: Youngstrom, Christopher E., Withers, Kelley A., Irish, Erin E., Cheng, Chi-Lien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036803/
https://www.ncbi.nlm.nih.gov/pubmed/35462532
http://dx.doi.org/10.1186/s12870-022-03590-0
Descripción
Sumario:BACKGROUND: Plants have the lifelong ability to generate new organs due to the persistent functioning of stem cells. In seed plants, groups of stem cells are housed in the shoot apical meristem (SAM), root apical meristem (RAM), and vascular cambium (VC). In ferns, a single shoot stem cell, the apical cell, is located in the SAM, whereas each root initiates from a single shoot-derived root initial. WUSCHEL-RELATED HOMEOBOX (WOX) family transcription factors play important roles to maintain stem-cell identity. WOX genes are grouped phylogenetically into three clades. The T3WOX/modern clade has expanded greatly in angiosperms, with members functioning in multiple meristems and complex developmental programs. The model fern Ceratopteris richardii has only one well-supported T3WOX/modern WOX gene, CrWUL. Its orthologs in Arabidopsis, AtWUS, AtWOX5, and AtWOX4, function in the SAM, RAM, and VC, respectively. Identifying the function of CrWUL will provide insights on the progenitor function and the diversification of the modern WOX genes in seed plants. RESULTS: To investigate the role of CrWUL in the fern, we examined the expression and function of CrWUL and found it expresses during early root development and in vasculature but not in the SAM. Knockdown of CrWUL by RNAi produced plants with fewer roots and fewer phloem cells. When expressed in Arabidopsis cambium, CrWUL was able to complement AtWOX4 function in an atwox4 mutant, suggesting that the WOX function in VC is conserved between ferns and angiosperms. Additionally, the proposed progenitor of T3WOX genes from Selaginella kraussiana is expressed in the vasculature but not in the shoot apical meristem. In contrast to the sporophyte, the expression of CrWUL in the gametophyte exhibits a more general expression pattern and when knocked down, offered little discernable phenotypes. CONCLUSIONS: The results presented here support the occurrence of co-option of the T3WOX/modern clade gene from the gametophyte to function in vasculature and root development in the sporophyte. The function in vasculature is likely to have existed in the progenitor of lycophyte T3WOX/modern clade genes and this function predates its SAM function found in many seed plants. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12870-022-03590-0.