Cargando…
Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature
BACKGROUND: Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic reprogramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interactions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potentia...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036805/ https://www.ncbi.nlm.nih.gov/pubmed/35468826 http://dx.doi.org/10.1186/s12967-022-03393-9 |
_version_ | 1784693596355559424 |
---|---|
author | He, Jing Chen, Ziwei Xue, Qingfeng Sun, Pingping Wang, Yuan Zhu, Cindy Shi, Wenyu |
author_facet | He, Jing Chen, Ziwei Xue, Qingfeng Sun, Pingping Wang, Yuan Zhu, Cindy Shi, Wenyu |
author_sort | He, Jing |
collection | PubMed |
description | BACKGROUND: Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic reprogramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interactions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potential associations with the immune microenvironment. METHODS: Gene expression and clinical data on DLBCL patients were obtained from the GEO database. Metabolism-associated molecular subtypes were identified by consensus clustering. A prognostic risk model containing 14 MAGs was established using Lasso-Cox regression in the GEO training cohort. It was then validated in the GEO internal testing cohort and TCGA external validation cohort. GO, KEGG and GSVA were used to explore the differences in enriched pathways between high- and low-risk groups. ESTIMATE, CIBERSORT, and ssGSEA analyses were used to assess the immune microenvironment. Finally, WGCNA analysis was used to identify two hub genes among the 14 model MAGs, and they were preliminarily verified in our tissue microarray (TMA) using multiple fluorescence immunohistochemistry (mIHC). RESULTS: Consensus clustering divided DLBCL patients into two metabolic subtypes with significant differences in prognosis and the immune microenvironment. Poor prognosis was associated with an immunosuppressive microenvironment. A prognostic risk model was constructed based on 14 MAGs and it was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment characterized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression of immune checkpoints. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an independent prognostic factor and had a better prognostic value than the International Prognostic Index (IPI) score. The risk model underwent multiple validations and the verification of the two hub genes in TMA indicated consistent results with the bioinformatics analyses. CONCLUSIONS: The molecular subtypes and a risk model based on MAGs proposed in our study are both promising prognostic classifications in DLBCL, which may provide novel insights for developing accurate targeted cancer therapies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03393-9. |
format | Online Article Text |
id | pubmed-9036805 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-90368052022-04-26 Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature He, Jing Chen, Ziwei Xue, Qingfeng Sun, Pingping Wang, Yuan Zhu, Cindy Shi, Wenyu J Transl Med Research BACKGROUND: Diffuse large B cell lymphoma (DLBCL) is the most common lymphoma in adults. Metabolic reprogramming in tumors is closely related to the immune microenvironment. This study aimed to explore the interactions between metabolism-associated genes (MAGs) and DLBCL prognosis and their potential associations with the immune microenvironment. METHODS: Gene expression and clinical data on DLBCL patients were obtained from the GEO database. Metabolism-associated molecular subtypes were identified by consensus clustering. A prognostic risk model containing 14 MAGs was established using Lasso-Cox regression in the GEO training cohort. It was then validated in the GEO internal testing cohort and TCGA external validation cohort. GO, KEGG and GSVA were used to explore the differences in enriched pathways between high- and low-risk groups. ESTIMATE, CIBERSORT, and ssGSEA analyses were used to assess the immune microenvironment. Finally, WGCNA analysis was used to identify two hub genes among the 14 model MAGs, and they were preliminarily verified in our tissue microarray (TMA) using multiple fluorescence immunohistochemistry (mIHC). RESULTS: Consensus clustering divided DLBCL patients into two metabolic subtypes with significant differences in prognosis and the immune microenvironment. Poor prognosis was associated with an immunosuppressive microenvironment. A prognostic risk model was constructed based on 14 MAGs and it was used to classify the patients into two risk groups; the high-risk group had poorer prognosis and an immunosuppressive microenvironment characterized by low immune score, low immune status, high abundance of immunosuppressive cells, and high expression of immune checkpoints. Cox regression, ROC curve analysis, and a nomogram indicated that the risk model was an independent prognostic factor and had a better prognostic value than the International Prognostic Index (IPI) score. The risk model underwent multiple validations and the verification of the two hub genes in TMA indicated consistent results with the bioinformatics analyses. CONCLUSIONS: The molecular subtypes and a risk model based on MAGs proposed in our study are both promising prognostic classifications in DLBCL, which may provide novel insights for developing accurate targeted cancer therapies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12967-022-03393-9. BioMed Central 2022-04-25 /pmc/articles/PMC9036805/ /pubmed/35468826 http://dx.doi.org/10.1186/s12967-022-03393-9 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research He, Jing Chen, Ziwei Xue, Qingfeng Sun, Pingping Wang, Yuan Zhu, Cindy Shi, Wenyu Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title | Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title_full | Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title_fullStr | Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title_full_unstemmed | Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title_short | Identification of molecular subtypes and a novel prognostic model of diffuse large B-cell lymphoma based on a metabolism-associated gene signature |
title_sort | identification of molecular subtypes and a novel prognostic model of diffuse large b-cell lymphoma based on a metabolism-associated gene signature |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9036805/ https://www.ncbi.nlm.nih.gov/pubmed/35468826 http://dx.doi.org/10.1186/s12967-022-03393-9 |
work_keys_str_mv | AT hejing identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT chenziwei identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT xueqingfeng identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT sunpingping identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT wangyuan identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT zhucindy identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature AT shiwenyu identificationofmolecularsubtypesandanovelprognosticmodelofdiffuselargebcelllymphomabasedonametabolismassociatedgenesignature |