Cargando…
Determining breast cancer biomarker status and associated morphological features using deep learning
BACKGROUND: Breast cancer management depends on biomarkers including estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (ER/PR/HER2). Though existing scoring systems are widely used and well-validated, they can involve costly preparation and variable interpretatio...
Autores principales: | Gamble, Paul, Jaroensri, Ronnachai, Wang, Hongwu, Tan, Fraser, Moran, Melissa, Brown, Trissia, Flament-Auvigne, Isabelle, Rakha, Emad A., Toss, Michael, Dabbs, David J., Regitnig, Peter, Olson, Niels, Wren, James H., Robinson, Carrie, Corrado, Greg S., Peng, Lily H., Liu, Yun, Mermel, Craig H., Steiner, David F., Chen, Po-Hsuan Cameron |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037318/ https://www.ncbi.nlm.nih.gov/pubmed/35602213 http://dx.doi.org/10.1038/s43856-021-00013-3 |
Ejemplares similares
-
Deep learning models for histologic grading of breast cancer and association with disease prognosis
por: Jaroensri, Ronnachai, et al.
Publicado: (2022) -
Artificial intelligence in digital breast pathology: Techniques and applications
por: Ibrahim, Asmaa, et al.
Publicado: (2019) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
por: Krogue, Justin D., et al.
Publicado: (2023)