Cargando…
Selective particle attention: Rapidly and flexibly selecting features for deep reinforcement learning
Deep Reinforcement Learning (RL) is often criticised for being data inefficient and inflexible to changes in task structure. Part of the reason for these issues is that Deep RL typically learns end-to-end using backpropagation, which results in task-specific representations. One approach for circumv...
Autores principales: | Blakeman, Sam, Mareschal, Denis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Pergamon Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037388/ https://www.ncbi.nlm.nih.gov/pubmed/35358888 http://dx.doi.org/10.1016/j.neunet.2022.03.015 |
Ejemplares similares
-
A complementary learning systems approach to temporal difference learning
por: Blakeman, Sam, et al.
Publicado: (2020) -
A Flexible Mechanism of Rule Selection Enables Rapid Feature-Based Reinforcement Learning
por: Balcarras, Matthew, et al.
Publicado: (2016) -
Intelligent Feature Selection for ECG-Based Personal Authentication Using Deep Reinforcement Learning
por: Baek, Suwhan, et al.
Publicado: (2023) -
Dynamic selective auditory attention detection using RNN and reinforcement learning
por: Geravanchizadeh, Masoud, et al.
Publicado: (2021) -
ID-RDRL: a deep reinforcement learning-based feature selection intrusion detection model
por: Ren, Kezhou, et al.
Publicado: (2022)