Cargando…
Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone
Marine euphotic zone is the pivotal region for interplay of light-mineral–microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] i...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037543/ https://www.ncbi.nlm.nih.gov/pubmed/35479644 http://dx.doi.org/10.3389/fmicb.2022.846441 |
_version_ | 1784693744615817216 |
---|---|
author | Liu, Jia Ge, Xiao Ding, Hongrui Yang, Shanshan Sun, Yuan Li, Yanzhang Ji, Xiang Li, Yan Lu, Anhuai |
author_facet | Liu, Jia Ge, Xiao Ding, Hongrui Yang, Shanshan Sun, Yuan Li, Yanzhang Ji, Xiang Li, Yan Lu, Anhuai |
author_sort | Liu, Jia |
collection | PubMed |
description | Marine euphotic zone is the pivotal region for interplay of light-mineral–microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone. |
format | Online Article Text |
id | pubmed-9037543 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-90375432022-04-26 Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone Liu, Jia Ge, Xiao Ding, Hongrui Yang, Shanshan Sun, Yuan Li, Yanzhang Ji, Xiang Li, Yan Lu, Anhuai Front Microbiol Microbiology Marine euphotic zone is the pivotal region for interplay of light-mineral–microorganism and elements cycle, in which semiconducting minerals exist widely and iron-bearing goethite is a typical and widespread one. In this work, we have conducted in-depth researches on the effect of ferrous [Fe(II)] ions dissolved by photoreduction of goethite on microbial community structure and diversity. The mineral phase, structure and morphology of synthesized goethite were characterized by Raman, X-ray diffraction (XRD), energy disperse spectroscopy (EDS), environmental scanning electron microscope (ESEM), and atomic force microscope (AFM). Photoelectrochemical measurements tested photoelectric response and redox activity of goethite, having proved its significant property of photoelectric response with 44.11% increment of the average photocurrent density relative to the dark current density. The photoreduction experiments of goethite were conducted under light condition in simulated seawater. It has suggested the photoreduction of goethite could occur and Fe(III) was reduced to Fe(II). The dissolved Fe(II) from the photoreduction of goethite under light condition was nearly 11 times than that group without light after a 10-day reaction. Furthermore, results of microbial community sequencing analysis indicated that dissolved Fe(II) could affect the structure and regulate the decrease of microbial community diversity. The emergence of dominant bacteria associated with iron oxidation and transport protein has suggested their obvious selectivity and adaptability in the environment with adding dissolved Fe(II). This work revealed the photoreduction process of semiconducting goethite was remarkable, giving rise to a non-negligible dissolved Fe(II) and its selective effect on the structure, diversity, as well as the function of microbial community. This light-induced interaction between minerals and microorganisms may also further regulate correlative metabolic pathways of carbon cycle in the marine euphotic zone. Frontiers Media S.A. 2022-04-11 /pmc/articles/PMC9037543/ /pubmed/35479644 http://dx.doi.org/10.3389/fmicb.2022.846441 Text en Copyright © 2022 Liu, Ge, Ding, Yang, Sun, Li, Ji, Li and Lu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Liu, Jia Ge, Xiao Ding, Hongrui Yang, Shanshan Sun, Yuan Li, Yanzhang Ji, Xiang Li, Yan Lu, Anhuai Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title | Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title_full | Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title_fullStr | Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title_full_unstemmed | Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title_short | Effect of Photoreduction of Semiconducting Iron Mineral—Goethite on Microbial Community in the Marine Euphotic Zone |
title_sort | effect of photoreduction of semiconducting iron mineral—goethite on microbial community in the marine euphotic zone |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037543/ https://www.ncbi.nlm.nih.gov/pubmed/35479644 http://dx.doi.org/10.3389/fmicb.2022.846441 |
work_keys_str_mv | AT liujia effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT gexiao effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT dinghongrui effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT yangshanshan effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT sunyuan effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT liyanzhang effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT jixiang effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT liyan effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone AT luanhuai effectofphotoreductionofsemiconductingironmineralgoethiteonmicrobialcommunityinthemarineeuphoticzone |