Cargando…
Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study
The growing energy demand speed up the designing of competent photovoltaic materials. Herein, five zinc phthalocyanine-based donor materials T1–T5 are designed by substituting various groups (isopropoxy, cyano, fluoro, methoxycarbonyl, and dicyanomethyl) around zinc phthalocyanine. B3LYP/6-31G (d,p)...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037920/ https://www.ncbi.nlm.nih.gov/pubmed/35480647 http://dx.doi.org/10.1039/d1ra04529f |
_version_ | 1784693822855315456 |
---|---|
author | Siddique, Sabir Ali Arshad, Muhammad Naveed, Sabiha Mehboob, Muhammad Yasir Adnan, Muhammad Hussain, Riaz Ali, Babar Siddique, Muhammad Bilal Ahmed Liu, Xin |
author_facet | Siddique, Sabir Ali Arshad, Muhammad Naveed, Sabiha Mehboob, Muhammad Yasir Adnan, Muhammad Hussain, Riaz Ali, Babar Siddique, Muhammad Bilal Ahmed Liu, Xin |
author_sort | Siddique, Sabir Ali |
collection | PubMed |
description | The growing energy demand speed up the designing of competent photovoltaic materials. Herein, five zinc phthalocyanine-based donor materials T1–T5 are designed by substituting various groups (isopropoxy, cyano, fluoro, methoxycarbonyl, and dicyanomethyl) around zinc phthalocyanine. B3LYP/6-31G (d,p) level density functional theory (DFT) was used to investigate the optoelectronic properties of five zinc phthalocyanine-based dyes T1–T5 for dye-sensitized solar cells. The designed molecule T1 shows maximum absorption wavelength (λ(max)) in the absorption spectrum at 708.89 and 751.88 nm both in gaseous state and in THF (tetrahydrofuran) solvent. The E(g) value of T1 (1.86 eV) is less than reference R, indicating a greater charge transfer rate for T1 among the molecules. The values of open-circuit voltages achieved with acceptor polymer PC(71)BM are higher than R except for T1 and are 0.69 V, 1.95 V, 1.20 V, 1.44 V, and 1.84 V for T1, T2, T3, T4, and T5, respectively. The lower the reorganization energy, the higher the charge transfer for T1 due to its lower hole mobility (0.06297 eV) than R. Thus, the designed T1–T5 molecules are expected to exhibit superior performance in dye-sensitized solar cells. |
format | Online Article Text |
id | pubmed-9037920 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90379202022-04-26 Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study Siddique, Sabir Ali Arshad, Muhammad Naveed, Sabiha Mehboob, Muhammad Yasir Adnan, Muhammad Hussain, Riaz Ali, Babar Siddique, Muhammad Bilal Ahmed Liu, Xin RSC Adv Chemistry The growing energy demand speed up the designing of competent photovoltaic materials. Herein, five zinc phthalocyanine-based donor materials T1–T5 are designed by substituting various groups (isopropoxy, cyano, fluoro, methoxycarbonyl, and dicyanomethyl) around zinc phthalocyanine. B3LYP/6-31G (d,p) level density functional theory (DFT) was used to investigate the optoelectronic properties of five zinc phthalocyanine-based dyes T1–T5 for dye-sensitized solar cells. The designed molecule T1 shows maximum absorption wavelength (λ(max)) in the absorption spectrum at 708.89 and 751.88 nm both in gaseous state and in THF (tetrahydrofuran) solvent. The E(g) value of T1 (1.86 eV) is less than reference R, indicating a greater charge transfer rate for T1 among the molecules. The values of open-circuit voltages achieved with acceptor polymer PC(71)BM are higher than R except for T1 and are 0.69 V, 1.95 V, 1.20 V, 1.44 V, and 1.84 V for T1, T2, T3, T4, and T5, respectively. The lower the reorganization energy, the higher the charge transfer for T1 due to its lower hole mobility (0.06297 eV) than R. Thus, the designed T1–T5 molecules are expected to exhibit superior performance in dye-sensitized solar cells. The Royal Society of Chemistry 2021-08-12 /pmc/articles/PMC9037920/ /pubmed/35480647 http://dx.doi.org/10.1039/d1ra04529f Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Siddique, Sabir Ali Arshad, Muhammad Naveed, Sabiha Mehboob, Muhammad Yasir Adnan, Muhammad Hussain, Riaz Ali, Babar Siddique, Muhammad Bilal Ahmed Liu, Xin Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title | Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title_full | Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title_fullStr | Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title_full_unstemmed | Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title_short | Efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed DFT study |
title_sort | efficient tuning of zinc phthalocyanine-based dyes for dye-sensitized solar cells: a detailed dft study |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037920/ https://www.ncbi.nlm.nih.gov/pubmed/35480647 http://dx.doi.org/10.1039/d1ra04529f |
work_keys_str_mv | AT siddiquesabirali efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT arshadmuhammad efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT naveedsabiha efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT mehboobmuhammadyasir efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT adnanmuhammad efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT hussainriaz efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT alibabar efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT siddiquemuhammadbilalahmed efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy AT liuxin efficienttuningofzincphthalocyaninebaseddyesfordyesensitizedsolarcellsadetaileddftstudy |