Cargando…
Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite
Amorphous cobalt–calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037991/ https://www.ncbi.nlm.nih.gov/pubmed/35480747 http://dx.doi.org/10.1039/d1ra05108c |
_version_ | 1784693838158233600 |
---|---|
author | Pyo, Eunji Lee, Keunyoung Park, Gi-Tae Ha, Se-Young Lee, Seonhong Kim, Chung Soo Kwon, Ki-Young |
author_facet | Pyo, Eunji Lee, Keunyoung Park, Gi-Tae Ha, Se-Young Lee, Seonhong Kim, Chung Soo Kwon, Ki-Young |
author_sort | Pyo, Eunji |
collection | PubMed |
description | Amorphous cobalt–calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film concurrently occur on the electrode surface without the mass transfer of phosphate ions into the bulk solution. Elemental, crystallographic, and morphological analyses (EDX, ICP-AES, XPS, and XRD) indicate that the CCPC is composed of amorphous cobalt oxide with calcium and phosphate. The film exhibits durable oxygen evolution reaction (OER) catalytic properties under neutral and basic aqueous condition. Compared to using solution phase of phosphate source, our preparation method utilizing solid hydroxyapatite has advantage of preventing unnecessary chemical reaction between phosphate and other chemical species in bulk solution. |
format | Online Article Text |
id | pubmed-9037991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-90379912022-04-26 Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite Pyo, Eunji Lee, Keunyoung Park, Gi-Tae Ha, Se-Young Lee, Seonhong Kim, Chung Soo Kwon, Ki-Young RSC Adv Chemistry Amorphous cobalt–calcium phosphate composite (CCPC) films are electrochemically prepared on various electrodes by utilizing the solid phase of hydroxyapatite as a phosphate source. The CCPC film formation is surface process in which the dissolution of hydroxyapatite and the deposition of CCPC film concurrently occur on the electrode surface without the mass transfer of phosphate ions into the bulk solution. Elemental, crystallographic, and morphological analyses (EDX, ICP-AES, XPS, and XRD) indicate that the CCPC is composed of amorphous cobalt oxide with calcium and phosphate. The film exhibits durable oxygen evolution reaction (OER) catalytic properties under neutral and basic aqueous condition. Compared to using solution phase of phosphate source, our preparation method utilizing solid hydroxyapatite has advantage of preventing unnecessary chemical reaction between phosphate and other chemical species in bulk solution. The Royal Society of Chemistry 2021-08-23 /pmc/articles/PMC9037991/ /pubmed/35480747 http://dx.doi.org/10.1039/d1ra05108c Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Pyo, Eunji Lee, Keunyoung Park, Gi-Tae Ha, Se-Young Lee, Seonhong Kim, Chung Soo Kwon, Ki-Young Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title | Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title_full | Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title_fullStr | Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title_full_unstemmed | Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title_short | Concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
title_sort | concurrent occurrence of electrochemical dissolution/deposition of cobalt–calcium phosphate composite |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9037991/ https://www.ncbi.nlm.nih.gov/pubmed/35480747 http://dx.doi.org/10.1039/d1ra05108c |
work_keys_str_mv | AT pyoeunji concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT leekeunyoung concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT parkgitae concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT haseyoung concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT leeseonhong concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT kimchungsoo concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite AT kwonkiyoung concurrentoccurrenceofelectrochemicaldissolutiondepositionofcobaltcalciumphosphatecomposite |