Cargando…

U-RISC: An Annotated Ultra-High-Resolution Electron Microscopy Dataset Challenging the Existing Deep Learning Algorithms

Connectomics is a developing field aiming at reconstructing the connection of the neural system at the nanometer scale. Computer vision technology, especially deep learning methods used in image processing, has promoted connectomic data analysis to a new era. However, the performance of the state-of...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Ruohua, Wang, Wenyao, Li, Zhixuan, He, Liuyuan, Sheng, Kaiwen, Ma, Lei, Du, Kai, Jiang, Tingting, Huang, Tiejun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038176/
https://www.ncbi.nlm.nih.gov/pubmed/35480847
http://dx.doi.org/10.3389/fncom.2022.842760
Descripción
Sumario:Connectomics is a developing field aiming at reconstructing the connection of the neural system at the nanometer scale. Computer vision technology, especially deep learning methods used in image processing, has promoted connectomic data analysis to a new era. However, the performance of the state-of-the-art (SOTA) methods still falls behind the demand of scientific research. Inspired by the success of ImageNet, we present an annotated ultra-high resolution image segmentation dataset for cell membrane (U-RISC), which is the largest cell membrane-annotated electron microscopy (EM) dataset with a resolution of 2.18 nm/pixel. Multiple iterative annotations ensured the quality of the dataset. Through an open competition, we reveal that the performance of current deep learning methods still has a considerable gap from the human level, different from ISBI 2012, on which the performance of deep learning is closer to the human level. To explore the causes of this discrepancy, we analyze the neural networks with a visualization method, which is an attribution analysis. We find that the U-RISC requires a larger area around a pixel to predict whether the pixel belongs to the cell membrane or not. Finally, we integrate the currently available methods to provide a new benchmark (0.67, 10% higher than the leader of the competition, 0.61) for cell membrane segmentation on the U-RISC and propose some suggestions in developing deep learning algorithms. The U-RISC dataset and the deep learning codes used in this study are publicly available.