Cargando…
Multisource Deep Transfer Learning Based on Balanced Distribution Adaptation
The current traditional unsupervised transfer learning assumes that the sample is collected from a single domain. From the aspect of practical application, the sample from a single-source domain is often not enough. In most cases, we usually collect labeled data from multiple domains. In recent year...
Autores principales: | Gao, Peng, Li, Jingmei, Zhao, Guodong, Ding, Changhong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038385/ https://www.ncbi.nlm.nih.gov/pubmed/35479600 http://dx.doi.org/10.1155/2022/6915216 |
Ejemplares similares
-
Instance Transfer Learning with Multisource Dynamic TrAdaBoost
por: Zhang, Qian, et al.
Publicado: (2014) -
Classification of tumor from computed tomography images: A brain-inspired multisource transfer learning under probability distribution adaptation
por: Liu, Yu, et al.
Publicado: (2022) -
MSDRP: a deep learning model based on multisource data for predicting drug response
por: Zhao, Haochen, et al.
Publicado: (2023) -
An Interpretable High-Accuracy Method for Rice Disease Detection Based on Multisource Data and Transfer Learning
por: Li, Jiaqi, et al.
Publicado: (2023) -
Visual Evaluation of Urban Streetscape Design Supported by Multisource Data and Deep Learning
por: Feng, Guanqing, et al.
Publicado: (2022)