Cargando…

An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines

The FusX TALE Based Editor (FusXTBE) is a programmable base editing platform that can introduce specific TC-to-TT variations in the mitochondrial DNA (mtDNA). Here, we provide a protocol describing the synthesis and testing of the FusXTBE plasmids in cultured human cell lines. This tool is designed...

Descripción completa

Detalles Bibliográficos
Autores principales: Kar, Bibekananda, Sabharwal, Ankit, Restrepo-Castillo, Santiago, Simone, Brandon W., Clark, Karl J., Ekker, Stephen C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038556/
https://www.ncbi.nlm.nih.gov/pubmed/35496789
http://dx.doi.org/10.1016/j.xpro.2022.101288
_version_ 1784693949180411904
author Kar, Bibekananda
Sabharwal, Ankit
Restrepo-Castillo, Santiago
Simone, Brandon W.
Clark, Karl J.
Ekker, Stephen C.
author_facet Kar, Bibekananda
Sabharwal, Ankit
Restrepo-Castillo, Santiago
Simone, Brandon W.
Clark, Karl J.
Ekker, Stephen C.
author_sort Kar, Bibekananda
collection PubMed
description The FusX TALE Based Editor (FusXTBE) is a programmable base editing platform that can introduce specific TC-to-TT variations in the mitochondrial DNA (mtDNA). Here, we provide a protocol describing the synthesis and testing of the FusXTBE plasmids in cultured human cell lines. This tool is designed to be easily modified to work in diverse applications where editing of mitochondrial DNA is desired. For complete details on the use and execution of this protocol, please refer to Sabharwal et al. (2021) and Ma et al. (2016).
format Online
Article
Text
id pubmed-9038556
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-90385562022-04-27 An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines Kar, Bibekananda Sabharwal, Ankit Restrepo-Castillo, Santiago Simone, Brandon W. Clark, Karl J. Ekker, Stephen C. STAR Protoc Protocol The FusX TALE Based Editor (FusXTBE) is a programmable base editing platform that can introduce specific TC-to-TT variations in the mitochondrial DNA (mtDNA). Here, we provide a protocol describing the synthesis and testing of the FusXTBE plasmids in cultured human cell lines. This tool is designed to be easily modified to work in diverse applications where editing of mitochondrial DNA is desired. For complete details on the use and execution of this protocol, please refer to Sabharwal et al. (2021) and Ma et al. (2016). Elsevier 2022-04-14 /pmc/articles/PMC9038556/ /pubmed/35496789 http://dx.doi.org/10.1016/j.xpro.2022.101288 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Protocol
Kar, Bibekananda
Sabharwal, Ankit
Restrepo-Castillo, Santiago
Simone, Brandon W.
Clark, Karl J.
Ekker, Stephen C.
An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title_full An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title_fullStr An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title_full_unstemmed An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title_short An optimized FusX assembly-based technique to introduce mitochondrial TC-to-TT variations in human cell lines
title_sort optimized fusx assembly-based technique to introduce mitochondrial tc-to-tt variations in human cell lines
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038556/
https://www.ncbi.nlm.nih.gov/pubmed/35496789
http://dx.doi.org/10.1016/j.xpro.2022.101288
work_keys_str_mv AT karbibekananda anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT sabharwalankit anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT restrepocastillosantiago anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT simonebrandonw anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT clarkkarlj anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT ekkerstephenc anoptimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT karbibekananda optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT sabharwalankit optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT restrepocastillosantiago optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT simonebrandonw optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT clarkkarlj optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines
AT ekkerstephenc optimizedfusxassemblybasedtechniquetointroducemitochondrialtctottvariationsinhumancelllines