Cargando…

Stimulating both eyes with matching stimuli enhances V1 responses

Neurons in the primary visual cortex (V1) of primates play a key role in combining monocular inputs to form a binocular response. Although much has been gleaned from studying how V1 responds to discrepant (dichoptic) images, equally important is to understand how V1 responds to concordant (dioptic)...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitchell, Blake A., Dougherty, Kacie, Westerberg, Jacob A., Carlson, Brock M., Daumail, Loïc, Maier, Alexander, Cox, Michele A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038564/
https://www.ncbi.nlm.nih.gov/pubmed/35494250
http://dx.doi.org/10.1016/j.isci.2022.104182
Descripción
Sumario:Neurons in the primary visual cortex (V1) of primates play a key role in combining monocular inputs to form a binocular response. Although much has been gleaned from studying how V1 responds to discrepant (dichoptic) images, equally important is to understand how V1 responds to concordant (dioptic) images in the two eyes. Here, we investigated the extent to which concordant, balanced, zero-disparity binocular stimulation modifies V1 responses to varying stimulus contrast using intracranial multielectrode arrays. On average, binocular stimuli evoked stronger V1 activity than their monocular counterparts. This binocular facilitation scaled most proportionately with contrast during the initial transient. As V1 responses evolved, additional contrast-mediated dynamics emerged. Specifically, responses exhibited longer maintenance of facilitation for lower contrast and binocular suppression at high contrast. These results suggest that V1 processes concordant stimulation of both eyes in at least two sequential steps: initial response enhancement followed by contrast-dependent control of excitation.