Cargando…
Brillouin Klein bottle from artificial gauge fields
A Brillouin zone is the unit for the momentum space of a crystal. It is topologically a torus, and distinguishing whether a set of wave functions over the Brillouin torus can be smoothly deformed to another leads to the classification of various topological states of matter. Here, we show that under...
Autores principales: | Chen, Z. Y., Yang, Shengyuan A., Zhao, Y. X. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038716/ https://www.ncbi.nlm.nih.gov/pubmed/35468905 http://dx.doi.org/10.1038/s41467-022-29953-7 |
Ejemplares similares
-
Spanning Trees of Lattices Embedded on the Klein Bottle
por: Lu, Fuliang
Publicado: (2014) -
Classification of time-reversal-invariant crystals with gauge structures
por: Chen, Z. Y., et al.
Publicado: (2023) -
Kaluza-Klein monopoles and gauged $\sigma$ models
por: Bergshoeff, E A, et al.
Publicado: (1997) -
Finite temperature Z(N) phase transition with Kaluza-Klein gauge fields
por: Farakos, K., et al.
Publicado: (2002) -
Math geek: from klein bottles to chaos theory, a guide to the nerdiest math facts, theorems, and equations
por: Rosen, Raphael
Publicado: (2015)