Cargando…
Clinical target segmentation using a novel deep neural network: double attention Res-U-Net
We introduced Double Attention Res-U-Net architecture to address medical image segmentation problem in different medical imaging system. Accurate medical image segmentation suffers from some challenges including, difficulty of different interest object modeling, presence of noise, and signal dropout...
Autores principales: | Ashkani Chenarlogh, Vahid, Shabanzadeh, Ali, Ghelich Oghli, Mostafa, Sirjani, Nasim, Farzin Moghadam, Sahar, Akhavan, Ardavan, Arabi, Hossein, Shiri, Isaac, Shabanzadeh, Zahra, Sanei Taheri, Morteza, Kazem Tarzamni, Mohammad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038725/ https://www.ncbi.nlm.nih.gov/pubmed/35468984 http://dx.doi.org/10.1038/s41598-022-10429-z |
Ejemplares similares
-
Automatic cardiac evaluations using a deep video object segmentation network
por: Sirjani, Nasim, et al.
Publicado: (2022) -
Recognition of Acute Lymphoblastic Leukemia Cells in Microscopic Images Using K-Means Clustering and Support Vector Machine Classifier
por: Amin, Morteza Moradi, et al.
Publicado: (2015) -
COLI‐Net: Deep learning‐assisted fully automated COVID‐19 lung and infection pneumonia lesion detection and segmentation from chest computed tomography images
por: Shiri, Isaac, et al.
Publicado: (2021) -
The Symptomatic Outcomes of Cholecystectomy for Gallstones
por: Shabanzadeh, Daniel Mønsted
Publicado: (2023) -
An Efficient Optimization Method for Solving Unsupervised Data Classification Problems
por: Shabanzadeh, Parvaneh, et al.
Publicado: (2015)