Cargando…
Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study
OBJECTIVES: We aim ed to evaluate a commercial artificial intelligence (AI) solution on a multicenter cohort of chest radiographs and to compare physicians' ability to detect and localize referable thoracic abnormalities with and without AI assistance. METHODS: In this retrospective diagnostic...
Autores principales: | Jin, Kwang Nam, Kim, Eun Young, Kim, Young Jae, Lee, Gi Pyo, Kim, Hyungjin, Oh, Sohee, Kim, Yong Suk, Han, Ju Hyuck, Cho, Young Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038825/ https://www.ncbi.nlm.nih.gov/pubmed/34973101 http://dx.doi.org/10.1007/s00330-021-08397-5 |
Ejemplares similares
-
The diagnostic value of grey-scale inversion technique in chest radiography
por: Ledda, Roberta Eufrasia, et al.
Publicado: (2022) -
Diagnostic performance of artificial intelligence model for pneumonia from chest radiography
por: Kwon, TaeWoo, et al.
Publicado: (2021) -
X-ray dark-field chest radiography: a reader study to evaluate the diagnostic quality of attenuation chest X-rays from a dual-contrast scanning prototype
por: Kattau, Margarete, et al.
Publicado: (2023) -
Observer training for computer-aided detection of pulmonary nodules in chest radiography
por: De Boo, Diederick W., et al.
Publicado: (2012) -
Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort
por: Kim, Eun Young, et al.
Publicado: (2021)