Cargando…

Local convergence of tensor methods

In this paper, we study local convergence of high-order Tensor Methods for solving convex optimization problems with composite objective. We justify local superlinear convergence under the assumption of uniform convexity of the smooth component, having Lipschitz-continuous high-order derivative. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Doikov, Nikita, Nesterov, Yurii
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038832/
https://www.ncbi.nlm.nih.gov/pubmed/35535049
http://dx.doi.org/10.1007/s10107-020-01606-x
Descripción
Sumario:In this paper, we study local convergence of high-order Tensor Methods for solving convex optimization problems with composite objective. We justify local superlinear convergence under the assumption of uniform convexity of the smooth component, having Lipschitz-continuous high-order derivative. The convergence both in function value and in the norm of minimal subgradient is established. Global complexity bounds for the Composite Tensor Method in convex and uniformly convex cases are also discussed. Lastly, we show how local convergence of the methods can be globalized using the inexact proximal iterations.