Cargando…
Local convergence of tensor methods
In this paper, we study local convergence of high-order Tensor Methods for solving convex optimization problems with composite objective. We justify local superlinear convergence under the assumption of uniform convexity of the smooth component, having Lipschitz-continuous high-order derivative. The...
Autores principales: | Doikov, Nikita, Nesterov, Yurii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038832/ https://www.ncbi.nlm.nih.gov/pubmed/35535049 http://dx.doi.org/10.1007/s10107-020-01606-x |
Ejemplares similares
-
Implementable tensor methods in unconstrained convex optimization
por: Nesterov, Yurii
Publicado: (2019) -
Minimizing Uniformly Convex Functions by Cubic Regularization of Newton Method
por: Doikov, Nikita, et al.
Publicado: (2021) -
Subgradient ellipsoid method for nonsmooth convex problems
por: Rodomanov, Anton, et al.
Publicado: (2022) -
Fast Augmented Lagrangian Method in the convex regime with convergence guarantees for the iterates
por: Boţ, Radu Ioan, et al.
Publicado: (2022) -
Noisy tensor completion via the sum-of-squares hierarchy
por: Barak, Boaz, et al.
Publicado: (2022)