Cargando…
Integrated Evolutionary Learning: An Artificial Intelligence Approach to Joint Learning of Features and Hyperparameters for Optimized, Explainable Machine Learning
Artificial intelligence and machine learning techniques have proved fertile methods for attacking difficult problems in medicine and public health. These techniques have garnered strong interest for the analysis of the large, multi-domain open science datasets that are increasingly available in heal...
Autores principales: | de Lacy, Nina, Ramshaw, Michael J., Kutz, J. Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038845/ https://www.ncbi.nlm.nih.gov/pubmed/35493616 http://dx.doi.org/10.3389/frai.2022.832530 |
Ejemplares similares
-
Accelerating Hyperparameter Tuning in Machine Learning for Alzheimer’s Disease With High Performance Computing
por: Zhang, Fan, et al.
Publicado: (2021) -
Editorial: Artificial Intelligence and Machine Learning Applications in Plant Genomics and Genetics
por: van Dijk, Aalt D. J., et al.
Publicado: (2022) -
Addressing Fairness, Bias, and Appropriate Use of Artificial Intelligence and Machine Learning in Global Health
por: Fletcher, Richard Ribón, et al.
Publicado: (2021) -
The potential of learning with (and not from) artificial intelligence in education
por: Chichekian, Tanya, et al.
Publicado: (2022) -
Predictive keywords: Using machine learning to explain document characteristics
por: Kyröläinen, Aki-Juhani, et al.
Publicado: (2023)