Cargando…
The effect of deep learning reconstruction on abdominal CT densitometry and image quality: a systematic review and meta-analysis
OBJECTIVE: To determine the difference in CT values and image quality of abdominal CT images reconstructed by filtered back-projection (FBP), hybrid iterative reconstruction (IR), and deep learning reconstruction (DLR). METHODS: PubMed and Embase were systematically searched for articles regarding C...
Autores principales: | van Stiphout, J. Abel, Driessen, Jan, Koetzier, Lennart R., Ruules, Lara B., Willemink, Martin J., Heemskerk, Jan W. T., van der Molen, Aart J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9038933/ https://www.ncbi.nlm.nih.gov/pubmed/34913104 http://dx.doi.org/10.1007/s00330-021-08438-z |
Ejemplares similares
-
The evolution of image reconstruction for CT—from filtered back projection to artificial intelligence
por: Willemink, Martin J., et al.
Publicado: (2018) -
Radiation dose reduction for CT assessment of urolithiasis using iterative reconstruction: A prospective intra-individual study
por: den Harder, Annemarie M., et al.
Publicado: (2017) -
Deep learning reconstruction improves radiomics feature stability and discriminative power in abdominal CT imaging: a phantom study
por: Michallek, Florian, et al.
Publicado: (2022) -
Deep learning–based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms
por: Oostveen, Luuk J., et al.
Publicado: (2021) -
A systematic review of the incidence of hypersensitivity reactions and post-contrast acute kidney injury after ioversol in more than 57,000 patients: part 1—intravenous administration
por: van der Molen, Aart J., et al.
Publicado: (2022)