Cargando…
A spatio-temporal autoregressive model for monitoring and predicting COVID infection rates
The COVID-19 epidemic has raised major issues with regard to modelling and forecasting outcomes such as cases, deaths and hospitalisations. In particular, the forecasting of area-specific counts of infectious disease poses problems when counts are changing rapidly and there are infection hotspots, a...
Autor principal: | Congdon, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039004/ https://www.ncbi.nlm.nih.gov/pubmed/35496370 http://dx.doi.org/10.1007/s10109-021-00366-2 |
Ejemplares similares
-
A Model for Highly Fluctuating Spatio-Temporal Infection Data, with Applications to the COVID Epidemic
por: Congdon, Peter
Publicado: (2022) -
Bayesian spatio-temporal modelling of child anemia in Ethiopia using conditional autoregressive model
por: Tessema, Zemenu Tadesse, et al.
Publicado: (2022) -
A Systematic Review of Areal Units and Adjacency Used in Bayesian Spatial and Spatio-Temporal Conditional Autoregressive Models in Health Research
por: Tessema, Zemenu Tadesse, et al.
Publicado: (2023) -
Heart Rate Modeling and Prediction Using Autoregressive Models and Deep Learning
por: Staffini, Alessio, et al.
Publicado: (2021) -
Autoregressive count data modeling on mobility patterns to predict cases of COVID-19 infection
por: Zhao, Jing, et al.
Publicado: (2022)