Cargando…

Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities

The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Thean, Dawn G. L., Chu, Hoi Yee, Fong, John H. C., Chan, Becky K. C., Zhou, Peng, Kwok, Cynthia C. S., Chan, Yee Man, Mak, Silvia Y. L., Choi, Gigi C. G., Ho, Joshua W. K., Zheng, Zongli, Wong, Alan S. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039034/
https://www.ncbi.nlm.nih.gov/pubmed/35468907
http://dx.doi.org/10.1038/s41467-022-29874-5
_version_ 1784694033836146688
author Thean, Dawn G. L.
Chu, Hoi Yee
Fong, John H. C.
Chan, Becky K. C.
Zhou, Peng
Kwok, Cynthia C. S.
Chan, Yee Man
Mak, Silvia Y. L.
Choi, Gigi C. G.
Ho, Joshua W. K.
Zheng, Zongli
Wong, Alan S. L.
author_facet Thean, Dawn G. L.
Chu, Hoi Yee
Fong, John H. C.
Chan, Becky K. C.
Zhou, Peng
Kwok, Cynthia C. S.
Chan, Yee Man
Mak, Silvia Y. L.
Choi, Gigi C. G.
Ho, Joshua W. K.
Zheng, Zongli
Wong, Alan S. L.
author_sort Thean, Dawn G. L.
collection PubMed
description The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here we generate and cross-validate ten in silico and experimental datasets of multi-domain combinatorial mutagenesis libraries for Cas9 engineering, and demonstrate that a machine learning-coupled engineering approach reduces the experimental screening burden by as high as 95% while enriching top-performing variants by ∼7.5-fold in comparison to the null model. Using this approach and followed by structure-guided engineering, we identify the N888R/A889Q variant conferring increased editing activity on the protospacer adjacent motif-relaxed KKH variant of Cas9 nuclease from Staphylococcus aureus (KKH-SaCas9) and its derived base editor in human cells. Our work validates a readily applicable workflow to enable resource-efficient high-throughput engineering of genome editor’s activity.
format Online
Article
Text
id pubmed-9039034
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-90390342022-04-28 Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities Thean, Dawn G. L. Chu, Hoi Yee Fong, John H. C. Chan, Becky K. C. Zhou, Peng Kwok, Cynthia C. S. Chan, Yee Man Mak, Silvia Y. L. Choi, Gigi C. G. Ho, Joshua W. K. Zheng, Zongli Wong, Alan S. L. Nat Commun Article The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here we generate and cross-validate ten in silico and experimental datasets of multi-domain combinatorial mutagenesis libraries for Cas9 engineering, and demonstrate that a machine learning-coupled engineering approach reduces the experimental screening burden by as high as 95% while enriching top-performing variants by ∼7.5-fold in comparison to the null model. Using this approach and followed by structure-guided engineering, we identify the N888R/A889Q variant conferring increased editing activity on the protospacer adjacent motif-relaxed KKH variant of Cas9 nuclease from Staphylococcus aureus (KKH-SaCas9) and its derived base editor in human cells. Our work validates a readily applicable workflow to enable resource-efficient high-throughput engineering of genome editor’s activity. Nature Publishing Group UK 2022-04-25 /pmc/articles/PMC9039034/ /pubmed/35468907 http://dx.doi.org/10.1038/s41467-022-29874-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Thean, Dawn G. L.
Chu, Hoi Yee
Fong, John H. C.
Chan, Becky K. C.
Zhou, Peng
Kwok, Cynthia C. S.
Chan, Yee Man
Mak, Silvia Y. L.
Choi, Gigi C. G.
Ho, Joshua W. K.
Zheng, Zongli
Wong, Alan S. L.
Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title_full Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title_fullStr Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title_full_unstemmed Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title_short Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
title_sort machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of crispr-cas9 genome editor activities
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039034/
https://www.ncbi.nlm.nih.gov/pubmed/35468907
http://dx.doi.org/10.1038/s41467-022-29874-5
work_keys_str_mv AT theandawngl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT chuhoiyee machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT fongjohnhc machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT chanbeckykc machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT zhoupeng machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT kwokcynthiacs machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT chanyeeman machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT maksilviayl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT choigigicg machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT hojoshuawk machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT zhengzongli machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities
AT wongalansl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities