Cargando…
Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities
The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039034/ https://www.ncbi.nlm.nih.gov/pubmed/35468907 http://dx.doi.org/10.1038/s41467-022-29874-5 |
_version_ | 1784694033836146688 |
---|---|
author | Thean, Dawn G. L. Chu, Hoi Yee Fong, John H. C. Chan, Becky K. C. Zhou, Peng Kwok, Cynthia C. S. Chan, Yee Man Mak, Silvia Y. L. Choi, Gigi C. G. Ho, Joshua W. K. Zheng, Zongli Wong, Alan S. L. |
author_facet | Thean, Dawn G. L. Chu, Hoi Yee Fong, John H. C. Chan, Becky K. C. Zhou, Peng Kwok, Cynthia C. S. Chan, Yee Man Mak, Silvia Y. L. Choi, Gigi C. G. Ho, Joshua W. K. Zheng, Zongli Wong, Alan S. L. |
author_sort | Thean, Dawn G. L. |
collection | PubMed |
description | The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here we generate and cross-validate ten in silico and experimental datasets of multi-domain combinatorial mutagenesis libraries for Cas9 engineering, and demonstrate that a machine learning-coupled engineering approach reduces the experimental screening burden by as high as 95% while enriching top-performing variants by ∼7.5-fold in comparison to the null model. Using this approach and followed by structure-guided engineering, we identify the N888R/A889Q variant conferring increased editing activity on the protospacer adjacent motif-relaxed KKH variant of Cas9 nuclease from Staphylococcus aureus (KKH-SaCas9) and its derived base editor in human cells. Our work validates a readily applicable workflow to enable resource-efficient high-throughput engineering of genome editor’s activity. |
format | Online Article Text |
id | pubmed-9039034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-90390342022-04-28 Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities Thean, Dawn G. L. Chu, Hoi Yee Fong, John H. C. Chan, Becky K. C. Zhou, Peng Kwok, Cynthia C. S. Chan, Yee Man Mak, Silvia Y. L. Choi, Gigi C. G. Ho, Joshua W. K. Zheng, Zongli Wong, Alan S. L. Nat Commun Article The genome-editing Cas9 protein uses multiple amino-acid residues to bind the target DNA. Considering only the residues in proximity to the target DNA as potential sites to optimise Cas9’s activity, the number of combinatorial variants to screen through is too massive for a wet-lab experiment. Here we generate and cross-validate ten in silico and experimental datasets of multi-domain combinatorial mutagenesis libraries for Cas9 engineering, and demonstrate that a machine learning-coupled engineering approach reduces the experimental screening burden by as high as 95% while enriching top-performing variants by ∼7.5-fold in comparison to the null model. Using this approach and followed by structure-guided engineering, we identify the N888R/A889Q variant conferring increased editing activity on the protospacer adjacent motif-relaxed KKH variant of Cas9 nuclease from Staphylococcus aureus (KKH-SaCas9) and its derived base editor in human cells. Our work validates a readily applicable workflow to enable resource-efficient high-throughput engineering of genome editor’s activity. Nature Publishing Group UK 2022-04-25 /pmc/articles/PMC9039034/ /pubmed/35468907 http://dx.doi.org/10.1038/s41467-022-29874-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Thean, Dawn G. L. Chu, Hoi Yee Fong, John H. C. Chan, Becky K. C. Zhou, Peng Kwok, Cynthia C. S. Chan, Yee Man Mak, Silvia Y. L. Choi, Gigi C. G. Ho, Joshua W. K. Zheng, Zongli Wong, Alan S. L. Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title | Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title_full | Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title_fullStr | Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title_full_unstemmed | Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title_short | Machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of CRISPR-Cas9 genome editor activities |
title_sort | machine learning-coupled combinatorial mutagenesis enables resource-efficient engineering of crispr-cas9 genome editor activities |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039034/ https://www.ncbi.nlm.nih.gov/pubmed/35468907 http://dx.doi.org/10.1038/s41467-022-29874-5 |
work_keys_str_mv | AT theandawngl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT chuhoiyee machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT fongjohnhc machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT chanbeckykc machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT zhoupeng machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT kwokcynthiacs machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT chanyeeman machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT maksilviayl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT choigigicg machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT hojoshuawk machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT zhengzongli machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities AT wongalansl machinelearningcoupledcombinatorialmutagenesisenablesresourceefficientengineeringofcrisprcas9genomeeditoractivities |