Cargando…

Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence

Periodical cicadas have mass emergences once every 13 or 17 years. Plants may need to upregulate defense production in response to an emergence. Defense production is energetically expensive, so plants may downregulate their production after periodical cicada populations dissipate. We examined the d...

Descripción completa

Detalles Bibliográficos
Autores principales: Perkovich, Cynthia, Ward, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039190/
https://www.ncbi.nlm.nih.gov/pubmed/35494497
http://dx.doi.org/10.1002/ece3.8839
_version_ 1784694070089613312
author Perkovich, Cynthia
Ward, David
author_facet Perkovich, Cynthia
Ward, David
author_sort Perkovich, Cynthia
collection PubMed
description Periodical cicadas have mass emergences once every 13 or 17 years. Plants may need to upregulate defense production in response to an emergence. Defense production is energetically expensive, so plants may downregulate their production after periodical cicada populations dissipate. We examined the defensive responses in leaves, branches, and roots of a common host, white oak (Quercus alba), prior to, during, and after a 17‐year periodical cicada (Magicicada spp.) emergence in western Pennsylvania, United States. During the emergence, total tannins and condensed tannins increased in foliar tissue, while simultaneously decreasing in root tissue compared to the prior and subsequent years. Non‐structural carbohydrates were low prior to the mass emergence but were re‐allocated to belowground storage during the emergence year and dropped thereafter. In the year after the emergence, there was a relaxation of foliar defenses, and root defenses returned to pre‐emergence concentrations. We also tested for differences in damaged and undamaged branches on the same tree during (2019) and the year after the emergence (2020). Both damaged and undamaged branches had significantly greater chemical defenses (polyphenols, total tannins, and condensed tannins) during the emergence than in the following year when there was no emergence. We propose that re‐allocation of resources may help maximize oak tree fitness by moving resources away from areas that are not in immediate threat to areas that are under immediate threat. Changes in aboveground and belowground phytochemistry in response to periodical cicada mass emergences may help us better understand which resource re‐allocation strategies are used by plants to minimize the effects of insect emergencies.
format Online
Article
Text
id pubmed-9039190
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-90391902022-04-28 Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence Perkovich, Cynthia Ward, David Ecol Evol Research Articles Periodical cicadas have mass emergences once every 13 or 17 years. Plants may need to upregulate defense production in response to an emergence. Defense production is energetically expensive, so plants may downregulate their production after periodical cicada populations dissipate. We examined the defensive responses in leaves, branches, and roots of a common host, white oak (Quercus alba), prior to, during, and after a 17‐year periodical cicada (Magicicada spp.) emergence in western Pennsylvania, United States. During the emergence, total tannins and condensed tannins increased in foliar tissue, while simultaneously decreasing in root tissue compared to the prior and subsequent years. Non‐structural carbohydrates were low prior to the mass emergence but were re‐allocated to belowground storage during the emergence year and dropped thereafter. In the year after the emergence, there was a relaxation of foliar defenses, and root defenses returned to pre‐emergence concentrations. We also tested for differences in damaged and undamaged branches on the same tree during (2019) and the year after the emergence (2020). Both damaged and undamaged branches had significantly greater chemical defenses (polyphenols, total tannins, and condensed tannins) during the emergence than in the following year when there was no emergence. We propose that re‐allocation of resources may help maximize oak tree fitness by moving resources away from areas that are not in immediate threat to areas that are under immediate threat. Changes in aboveground and belowground phytochemistry in response to periodical cicada mass emergences may help us better understand which resource re‐allocation strategies are used by plants to minimize the effects of insect emergencies. John Wiley and Sons Inc. 2022-04-25 /pmc/articles/PMC9039190/ /pubmed/35494497 http://dx.doi.org/10.1002/ece3.8839 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Perkovich, Cynthia
Ward, David
Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title_full Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title_fullStr Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title_full_unstemmed Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title_short Changes in white oak (Quercus alba) phytochemistry in response to periodical cicadas: Before, during, and after an emergence
title_sort changes in white oak (quercus alba) phytochemistry in response to periodical cicadas: before, during, and after an emergence
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039190/
https://www.ncbi.nlm.nih.gov/pubmed/35494497
http://dx.doi.org/10.1002/ece3.8839
work_keys_str_mv AT perkovichcynthia changesinwhiteoakquercusalbaphytochemistryinresponsetoperiodicalcicadasbeforeduringandafteranemergence
AT warddavid changesinwhiteoakquercusalbaphytochemistryinresponsetoperiodicalcicadasbeforeduringandafteranemergence