Cargando…
Deep convolutional forest: a dynamic deep ensemble approach for spam detection in text
The increase in people’s use of mobile messaging services has led to the spread of social engineering attacks like phishing, considering that spam text is one of the main factors in the dissemination of phishing attacks to steal sensitive data such as credit cards and passwords. In addition, rumors...
Autores principales: | Shaaban, Mai A., Hassan, Yasser F., Guirguis, Shawkat K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039275/ https://www.ncbi.nlm.nih.gov/pubmed/35496326 http://dx.doi.org/10.1007/s40747-022-00741-6 |
Ejemplares similares
-
Phishing Website Detection Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Yang, Rundong, et al.
Publicado: (2021) -
Enhancing Spam Message Classification and Detection Using Transformer-Based Embedding and Ensemble Learning
por: Ghourabi, Abdallah, et al.
Publicado: (2023) -
Detecting opinion spams through supervised boosting approach
por: Hazim, Mohamad, et al.
Publicado: (2018) -
Bearing Fault Diagnosis Method Based on Deep Convolutional Neural Network and Random Forest Ensemble Learning
por: Xu, Gaowei, et al.
Publicado: (2019) -
Real-Time Twitter Spam Detection and Sentiment Analysis using Machine Learning and Deep Learning Techniques
por: Rodrigues, Anisha P, et al.
Publicado: (2022)