Cargando…
Investigating for bias in healthcare algorithms: a sex-stratified analysis of supervised machine learning models in liver disease prediction
OBJECTIVES: The Indian Liver Patient Dataset (ILPD) is used extensively to create algorithms that predict liver disease. Given the existing research describing demographic inequities in liver disease diagnosis and management, these algorithms require scrutiny for potential biases. We address this ov...
Autores principales: | Straw, Isabel, Wu, Honghan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039354/ https://www.ncbi.nlm.nih.gov/pubmed/35470133 http://dx.doi.org/10.1136/bmjhci-2021-100457 |
Ejemplares similares
-
Supervised Algorithms of Machine Learning for the Prediction of Cervical Cancer
por: F., Asadi, et al.
Publicado: (2020) -
Comparing different supervised machine learning algorithms for disease prediction
por: Uddin, Shahadat, et al.
Publicado: (2019) -
Predicting cash holdings using supervised machine learning algorithms
por: Özlem, Şirin, et al.
Publicado: (2022) -
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Prediction of Lumbar Drainage-Related Meningitis Based on Supervised Machine Learning Algorithms
por: Wang, Peng, et al.
Publicado: (2022)