Cargando…

Three-dimensional analysis of the gap space under forearm casts

PURPOSE: Secondary displacement represents a frequent complication of conservative treatment of fractures, particularly of the distal radius. The gap space between skin and cast may lead to a certain degree movements and this increased mobility might favor redisplacement. The aim of this study was t...

Descripción completa

Detalles Bibliográficos
Autores principales: Wirtz, Roman, Pianigiani, Silvia, Innocenti, Bernardo, Schuind, Frédéric
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039477/
https://www.ncbi.nlm.nih.gov/pubmed/34154866
http://dx.doi.org/10.1016/j.cjtee.2021.05.007
Descripción
Sumario:PURPOSE: Secondary displacement represents a frequent complication of conservative treatment of fractures, particularly of the distal radius. The gap space between skin and cast may lead to a certain degree movements and this increased mobility might favor redisplacement. The aim of this study was to develop a new 3D method, to measure the gap space in all 3 geometrical planes, and to validate this new technique in a clinical setting of distal radius fractures. METHODS: This study applies 3D imaging to measure the space between plaster and skin as a potential factor of secondary displacement and therefore the failure of conservative treatment. We developed and validated a new methodology to analyze and compare different forearm casts made of plaster of Paris and fiberglass. An unpaired t-test was performed to document differences between the investigated parameters between plaster of Paris and fiberglass casts. The significance level was set at p < 0.05. RESULTS: In a series of 15 cases, we found the width of the gap space to average 4 mm, being slightly inferior on the radial side. Comparing the two different casting materials, plaster of Paris and fiberglass, we found a significantly larger variance of space under casts made of the first material (p=0.39). A roughness analysis showed also a markedly significantly higher irregularity of the undersurface of plaster of Paris as compared with fiberglass. CONCLUSION: This study allows for a better understanding of the nature of the “gap space” between cast and skin and will contribute to develop and improve new immobilization techniques and materials.