Cargando…
CRISPR/Cas9 mediated disruption of Inositol Pentakisphosphate 2-Kinase 1 (TaIPK1) reduces phytic acid and improves iron and zinc accumulation in wheat grains
INTRODUCTION: Phytic acid (PA) is an important antinutrient agent present in cereal grains which reduces the bioavailability of iron and zinc in human body, causing malnutrition. Inositol pentakisphosphate 2- kinase 1 (IPK1) gene has been reported to be an important gene for PA biosynthesis. OBJECTI...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039650/ https://www.ncbi.nlm.nih.gov/pubmed/35499048 http://dx.doi.org/10.1016/j.jare.2021.07.006 |
Sumario: | INTRODUCTION: Phytic acid (PA) is an important antinutrient agent present in cereal grains which reduces the bioavailability of iron and zinc in human body, causing malnutrition. Inositol pentakisphosphate 2- kinase 1 (IPK1) gene has been reported to be an important gene for PA biosynthesis. OBJECTIVE: A recent genome editing tool CRISPR/Cas9 has been successfully applied to develop biofortified rice by disrupting IPK1 gene, however, it remained a challenge in wheat. The aim of this study was to biofortify wheat using CRISPR/Cas9. METHODS: In this study, we isolated 3 TaIPK1 homeologs in wheat designated as TaIPK1.A, TaIPK1.B and TaIPK1.D and found that the expression abundance of TaIPK1.A was stronger in early stages of grain filling. Using CRISPR/Cas9, we have disrupted TaIPK1.A gene in cv. Borlaug-2016 with two guide RNAs targeting the 1st and 2nd exons. RESULTS: We got several genome-edited lines in the T(0) generation at frequencies of 12.7% and 10.8%. Sequencing analysis revealed deletion of 1–23 nucleotides and even an addition of 1 nucleotide in various lines. Analysis of the genome-edited lines revealed a significant decrease in the PA content and an increase in iron and zinc accumulation in grains compared with control plants. CONCLUSION: Our study demonstrates the potential application of CRISPR/Cas9 technique for the rapid generation of biofortified wheat cultivars. |
---|