Cargando…
Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients
INTRODUCTION: Gut microbiota has been implicated in the pharmacological activities of many natural products. As an effective hypolipidemic agent, berberine (BBR)’s clinical application is greatly impeded by the obvious inter-individual response variation. To date, little evidence exists on the causa...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039652/ https://www.ncbi.nlm.nih.gov/pubmed/35499044 http://dx.doi.org/10.1016/j.jare.2021.07.011 |
_version_ | 1784694174685069312 |
---|---|
author | Wu, Chongming Zhao, Ying Zhang, Yingying Yang, Yanan Su, Wenquan Yang, Yuanyuan Sun, Le Zhang, Fang Yu, Jiaqi Wang, Yaoxian Guo, Peng Zhu, Baoli Wu, Shengxian |
author_facet | Wu, Chongming Zhao, Ying Zhang, Yingying Yang, Yanan Su, Wenquan Yang, Yuanyuan Sun, Le Zhang, Fang Yu, Jiaqi Wang, Yaoxian Guo, Peng Zhu, Baoli Wu, Shengxian |
author_sort | Wu, Chongming |
collection | PubMed |
description | INTRODUCTION: Gut microbiota has been implicated in the pharmacological activities of many natural products. As an effective hypolipidemic agent, berberine (BBR)’s clinical application is greatly impeded by the obvious inter-individual response variation. To date, little evidence exists on the causality between gut microbes and its therapeutic effects, and the linkage of bacteria alterations to the inter-individual response variation. OBJECTIVES: This study aims to confirm the causal role of the gut microbiota in BBR’s anti-hyperlipidemic effect and identify key bacteria that can predict its effectiveness. METHODS: The correlation between gut microbiota and BBR’s inter-individual response variation was studied in hyperlipidemic patients. The causal role of gut microbes in BBR’s anti-hyperlipidemic effects was subsequently assessed by altered administration routes, co-treatment with antibiotics, fecal microbiota transplantation, and metagenomic analysis. RESULTS: Three-month clinical study showed that BBR was effectively to decrease serum lipids but displayed an obvious response variation. The cholesterol-lowering but not triglyceride-decreasing effect of BBR was closely related to its modulation on gut microbiota. Interestingly, the baseline levels of Alistipes and Blautia could accurately predict its anti-hypercholesterolemic efficiency in the following treatment. Causality experiments in mice further confirmed that the gut microbiome is both necessary and sufficient to mediate the lipid-lowering effect of BBR. The absence of Blautia substantially abolished BBR's cholesterol-decreasing efficacy. CONCLUSION: The gut microbiota is necessary and sufficient for BBR’s hyperlipidemia-ameliorating effect. The baseline composition of gut microbes can be an effective predictor for its pharmacotherapeutic efficacy, providing a novel way to achieve personalized therapy. |
format | Online Article Text |
id | pubmed-9039652 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-90396522022-04-27 Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients Wu, Chongming Zhao, Ying Zhang, Yingying Yang, Yanan Su, Wenquan Yang, Yuanyuan Sun, Le Zhang, Fang Yu, Jiaqi Wang, Yaoxian Guo, Peng Zhu, Baoli Wu, Shengxian J Adv Res Medicine INTRODUCTION: Gut microbiota has been implicated in the pharmacological activities of many natural products. As an effective hypolipidemic agent, berberine (BBR)’s clinical application is greatly impeded by the obvious inter-individual response variation. To date, little evidence exists on the causality between gut microbes and its therapeutic effects, and the linkage of bacteria alterations to the inter-individual response variation. OBJECTIVES: This study aims to confirm the causal role of the gut microbiota in BBR’s anti-hyperlipidemic effect and identify key bacteria that can predict its effectiveness. METHODS: The correlation between gut microbiota and BBR’s inter-individual response variation was studied in hyperlipidemic patients. The causal role of gut microbes in BBR’s anti-hyperlipidemic effects was subsequently assessed by altered administration routes, co-treatment with antibiotics, fecal microbiota transplantation, and metagenomic analysis. RESULTS: Three-month clinical study showed that BBR was effectively to decrease serum lipids but displayed an obvious response variation. The cholesterol-lowering but not triglyceride-decreasing effect of BBR was closely related to its modulation on gut microbiota. Interestingly, the baseline levels of Alistipes and Blautia could accurately predict its anti-hypercholesterolemic efficiency in the following treatment. Causality experiments in mice further confirmed that the gut microbiome is both necessary and sufficient to mediate the lipid-lowering effect of BBR. The absence of Blautia substantially abolished BBR's cholesterol-decreasing efficacy. CONCLUSION: The gut microbiota is necessary and sufficient for BBR’s hyperlipidemia-ameliorating effect. The baseline composition of gut microbes can be an effective predictor for its pharmacotherapeutic efficacy, providing a novel way to achieve personalized therapy. Elsevier 2021-07-30 /pmc/articles/PMC9039652/ /pubmed/35499044 http://dx.doi.org/10.1016/j.jare.2021.07.011 Text en © 2022 The Authors. Published by Elsevier B.V. on behalf of Cairo University. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Medicine Wu, Chongming Zhao, Ying Zhang, Yingying Yang, Yanan Su, Wenquan Yang, Yuanyuan Sun, Le Zhang, Fang Yu, Jiaqi Wang, Yaoxian Guo, Peng Zhu, Baoli Wu, Shengxian Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title | Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title_full | Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title_fullStr | Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title_full_unstemmed | Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title_short | Gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (BBR) and facilitates to predict BBR’s cholesterol-decreasing efficacy in patients |
title_sort | gut microbiota specifically mediates the anti-hypercholesterolemic effect of berberine (bbr) and facilitates to predict bbr’s cholesterol-decreasing efficacy in patients |
topic | Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039652/ https://www.ncbi.nlm.nih.gov/pubmed/35499044 http://dx.doi.org/10.1016/j.jare.2021.07.011 |
work_keys_str_mv | AT wuchongming gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT zhaoying gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT zhangyingying gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT yangyanan gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT suwenquan gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT yangyuanyuan gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT sunle gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT zhangfang gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT yujiaqi gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT wangyaoxian gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT guopeng gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT zhubaoli gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients AT wushengxian gutmicrobiotaspecificallymediatestheantihypercholesterolemiceffectofberberinebbrandfacilitatestopredictbbrscholesteroldecreasingefficacyinpatients |