Cargando…
Leucine-rich repeat kinase-2 deficiency protected against cardiac remodelling in mice via regulating autophagy formation and degradation
INTRODUCTION: Leucine-rich repetitive kinase-2 (LRRK2) is a Parkinson's disease-related gene that also participates in many inflammatory diseases. However, the functional role of LRRK2 in cardiovascular disease is not clear. OBJECTIVE: In this study, we aimed to elucidate the role of LRRK2 in c...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039674/ https://www.ncbi.nlm.nih.gov/pubmed/35499056 http://dx.doi.org/10.1016/j.jare.2021.07.004 |
Sumario: | INTRODUCTION: Leucine-rich repetitive kinase-2 (LRRK2) is a Parkinson's disease-related gene that also participates in many inflammatory diseases. However, the functional role of LRRK2 in cardiovascular disease is not clear. OBJECTIVE: In this study, we aimed to elucidate the role of LRRK2 in cardiac remodelling under pressure overload. METHODS: Aortic banding surgery was performed to induce cardiac remodelling in a LRRK2 knockout mouse model. A cardiomyocyte remodelling model was established by phenylephrine (PE) stimulation in neonatal rat cardiomyocytes. RESULTS: LRRK2 was upregulated in remodelled mouse hearts and cardiomyocytes. Cardiac hypertrophy, fibrosis and dysfunction were ameliorated in LRRK2 knockout mice. LRRK2 silencing protected against the PE-induced cardiomyocyte hypertrophic response, while LRRK2 over-expression worsened the PE-induced hypertrophic response in cardiomyocytes. Decreased autophagy was observed in remodelled cardiomyocytes, whereas LRRK2 silencing increased autophagy levels and LRRK2 overexpression reduced autophagy levels. The autophagy inhibitors 3-MA, bafilomycin and chloroquine reversed the protective effects of LRRK2 deficiency. The autophagy activator rapamycin reversed the deleterious effects of LRRK2 overexpression. We found that LRRK2 inhibited Bcl-2 phosphorylation, thus decreasing the phosphorylation of Beclin1. The protective effects of LRRK2 knockout were partly counteracted by Beclin1(+/−) in vivo and Beclin1 silencing in vitro. We also observed an interaction between LRRK2 and Rab7, an autolysosome degradation-associated protein, which caused Rab7 downregulation. Rab7 knockdown almost completely reversed LRRK2 silencing-induced protection of cardiomyocytes CONCLUSION: LRRK2 deficiency protected against cardiac remodelling under pressure overload by increasing Bcl-2/Beclin1 and Rab7-regulated autophagy levels in the heart. |
---|