Cargando…
A Comparison of XGBoost, Random Forest, and Nomograph for the Prediction of Disease Severity in Patients With COVID-19 Pneumonia: Implications of Cytokine and Immune Cell Profile
BACKGROUND AND AIMS: The aim of this study was to apply machine learning models and a nomogram to differentiate critically ill from non-critically ill COVID-19 pneumonia patients. METHODS: Clinical symptoms and signs, laboratory parameters, cytokine profile, and immune cellular data of 63 COVID-19 p...
Autores principales: | Hong, Wandong, Zhou, Xiaoying, Jin, Shengchun, Lu, Yajing, Pan, Jingyi, Lin, Qingyi, Yang, Shaopeng, Xu, Tingting, Basharat, Zarrin, Zippi, Maddalena, Fiorino, Sirio, Tsukanov, Vladislav, Stock, Simon, Grottesi, Alfonso, Chen, Qin, Pan, Jingye |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039730/ https://www.ncbi.nlm.nih.gov/pubmed/35493729 http://dx.doi.org/10.3389/fcimb.2022.819267 |
Ejemplares similares
-
Usefulness of Random Forest Algorithm in Predicting Severe Acute Pancreatitis
por: Hong, Wandong, et al.
Publicado: (2022) -
Serum Albumin Is Independently Associated with Persistent Organ Failure in Acute Pancreatitis
por: Hong, Wandong, et al.
Publicado: (2017) -
Relationship between Cholesterol-Related Lipids and Severe Acute Pancreatitis: From Bench to Bedside
por: Zhou, Xiaoying, et al.
Publicado: (2023) -
Damage associated molecular patterns and neutrophil extracellular traps in acute pancreatitis
por: Zhou, Xiaoying, et al.
Publicado: (2022) -
Critically Ill vs. Non-Critically Ill Patients With COVID-19 Pneumonia: Clinical Features, Laboratory Findings, and Prediction
por: Hong, Wandong, et al.
Publicado: (2021)