Cargando…
Open-Source Clinical Machine Learning Models: Critical Appraisal of Feasibility, Advantages, and Challenges
Machine learning applications promise to augment clinical capabilities and at least 64 models have already been approved by the US Food and Drug Administration. These tools are developed, shared, and used in an environment in which regulations and market forces remain immature. An important consider...
Autores principales: | Harish, Keerthi B, Price, W Nicholson, Aphinyanaphongs, Yindalon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039816/ https://www.ncbi.nlm.nih.gov/pubmed/35404258 http://dx.doi.org/10.2196/33970 |
Ejemplares similares
-
Minipolymyoclonus: A Critical Appraisal
por: Ganguly, Jacky, et al.
Publicado: (2021) -
Marketing and US Food and Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical Devices: A Systematic Review
por: Clark, Phoebe, et al.
Publicado: (2023) -
Evidence-based reproductive medicine: a critical appraisal
por: Dhont, M.
Publicado: (2013) -
Open standard is the new open source
por: Macek, Chris, et al.
Publicado: (2022) -
Addressing Public Health Emergencies via Facebook Surveys: Advantages, Challenges, and Practical Considerations
por: Grow, André, et al.
Publicado: (2020)