Cargando…
Predicting Psychotic Relapse in Schizophrenia With Mobile Sensor Data: Routine Cluster Analysis
BACKGROUND: Behavioral representations obtained from mobile sensing data can be helpful for the prediction of an oncoming psychotic relapse in patients with schizophrenia and the delivery of timely interventions to mitigate such relapse. OBJECTIVE: In this study, we aim to develop clustering models...
Autores principales: | Zhou, Joanne, Lamichhane, Bishal, Ben-Zeev, Dror, Campbell, Andrew, Sano, Akane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039818/ https://www.ncbi.nlm.nih.gov/pubmed/35404256 http://dx.doi.org/10.2196/31006 |
Ejemplares similares
-
mHealth-Assisted Detection of Precursors to Relapse in Schizophrenia
por: Buck, Benjamin, et al.
Publicado: (2021) -
Predicting Early Warning Signs of Psychotic Relapse From Passive Sensing Data: An Approach Using Encoder-Decoder Neural Networks
por: Adler, Daniel A, et al.
Publicado: (2020) -
Assessing the relationship between routine and schizophrenia symptoms with passively sensed measures of behavioral stability
por: He-Yueya, Joy, et al.
Publicado: (2020) -
Transdiagnostic Mobile Health: Smartphone Intervention Reduces Depressive Symptoms in People With Mood and Psychotic Disorders
por: Ben-Zeev, Dror, et al.
Publicado: (2019) -
Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia
por: Tseng, Vincent W.-S., et al.
Publicado: (2020)