Cargando…
Neural Translation and Automated Recognition of ICD-10 Medical Entities From Natural Language: Model Development and Performance Assessment
BACKGROUND: The recognition of medical entities from natural language is a ubiquitous problem in the medical field, with applications ranging from medical coding to the analysis of electronic health data for public health. It is, however, a complex task usually requiring human expert intervention, t...
Autores principales: | Falissard, Louis, Morgand, Claire, Ghosn, Walid, Imbaud, Claire, Bounebache, Karim, Rey, Grégoire |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9039820/ https://www.ncbi.nlm.nih.gov/pubmed/35404262 http://dx.doi.org/10.2196/26353 |
Ejemplares similares
-
A Deep Artificial Neural Network−Based Model for Prediction of Underlying Cause of Death From Death Certificates: Algorithm Development and Validation
por: Falissard, Louis, et al.
Publicado: (2020) -
Preparing for the ICD-10-CM Transition: Automated Methods for Translating ICD Codes in Clinical Phenotype Definitions
por: Fung, Kin Wah, et al.
Publicado: (2016) -
Impact of translation on named-entity recognition in radiology texts
por: Campos, Luís, et al.
Publicado: (2017) -
Automated comparison of last hospital main diagnosis and underlying cause of death ICD10 codes, France, 2008–2009
por: Lamarche-Vadel, Agathe, et al.
Publicado: (2014) -
Associations of cause-specific mortality with area level deprivation and travel time to health care in France from 1990 to 2007, a multilevel analysis
por: Ghosn, Walid, et al.
Publicado: (2017)